1
|
Cetindag S, Bellini B, Li R, Tsai EHR, Nykypanchuk D, Doerk GS. On-Demand Selection of the Latent Domain Orientation in Spray-Deposited Block Copolymer Thin Films. ACS NANO 2025; 19:3726-3739. [PMID: 39794154 DOI: 10.1021/acsnano.4c14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting. Subsequent solvent vapor annealing triggers assembly toward highly ordered cylindrical morphologies along the pathway determined by solvent evaporation in the prior spray deposition stage. Faster evaporation promotes assembly of vertically oriented cylinders spanning the entire film thickness (100-300 nm). In comparison, slow solvent evaporation permits intermicellar aggregation and incipient cylinder formation in solution, which induces horizontal cylinder assembly upon annealing. The evaporatively controlled latent orientation mechanism presented herein elucidates how nonequilibrium phenomena during casting govern successive self-assembly pathways and facilitates a versatile method to dictate the domain orientation of BCP thin films on demand on flexible and highly curved substrates or in distinct pattern areas on the same substrate.
Collapse
Affiliation(s)
- Semih Cetindag
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Beatrice Bellini
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
2
|
He Z, Huang J, Jiang K, Shi AC. Phase behavior of symmetric diblock copolymers under 3D soft confinement. SOFT MATTER 2024. [PMID: 39555992 DOI: 10.1039/d4sm01020e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The phase behavior of symmetric diblock copolymers under three-dimensional (3D) soft confinement is investigated using self-consistent field theory. Soft confinement is realized in binary blends composed of AB diblock copolymers and C homopolymers, where the copolymers self-assemble to form a droplet embedded in a homopolymer matrix. The phase behavior of the confined block copolymers is regulated by the degree of confinement and the selectivity of the homopolymers, resulting in a rich variety of novel structures. When the C homopolymers are neutral to the A- and B-blocks, stacked lamellae (SL) are formed where the number of layers increases with the droplet volume, resulting in a morphological transition sequence from Janus particles to square SL. When the C homopolymers are strongly selective for the B-blocks, a series of non-lamellar morphologies, including onion-, hamburger-, cross-, ring-, and cookie-like structures, are observed. A detailed free energy analysis reveals a first-order reversible transformation between SL and onion-like (OL) structures when the selectivity of the homopolymers is changed. Our results provide a comprehensive understanding of how various factors, such as the copolymer concentration, homopolymer chain length, degree of confinement, and homopolymer selectivity, affect the self-assembled structures of diblock copolymers under soft 3D confinement.
Collapse
Affiliation(s)
- Zhijuan He
- School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, P.R. China.
| | - Jin Huang
- Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, P.R. China
- School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, P.R. China.
| | - Kai Jiang
- School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, P.R. China.
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
3
|
Tang Q, Tang C, Huang Y, Müller M, Ma YQ. Suppression of bubbles in unstable active liquids via fast evaporation. Phys Rev E 2024; 110:054602. [PMID: 39690674 DOI: 10.1103/physreve.110.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 12/19/2024]
Abstract
A common intuition in thermodynamics is that bubbles can spontaneously grow in unstable liquids, which will be detrimental to a variety of physical and chemical processes, such as evaporation-induced self-assembly and electrocatalysis. Here, we show that this common intuition can be significantly reversed by demonstrating a suppression of bubbles in unstable active liquids induced by fast evaporation, which is in contrast to the bubble growth in passive liquids. Such anomalous bubble suppression can be attributed to an activity-induced inversion of pressure difference between bubbles and their surrounding liquid. Moreover, this pressure flip depends on the activity as well as the thermodynamics of passive liquids, and it can generate different kinetic pathways that allow controlling the bubble dynamics in unstable liquids. Our results establish a foundation for promoting applications of unstable active liquids in various physical and chemical processes.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Physical Science Research Center, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
4
|
Cooper AJ, Grzetic DJ, Delaney KT, Fredrickson GH. Investigating microstructure evolution in block copolymer membranes. J Chem Phys 2024; 160:074903. [PMID: 38380746 DOI: 10.1063/5.0188196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction of high performance membranes. In this study, we apply dynamical self-consistent field theory to model the SNIPS process and investigate the effect of various parameters on the membrane morphology: solvent selectivity, nonsolvent selectivity, initial film composition, and glass transition composition. We examine how solvent selectivity and concentration of polymers in the film impact the structure of micelles that connect to form the membrane matrix. In particular, we find that preserving the order in the surface layer and forming a connection between the supporting and surface layer are nontrivial and sensitive to each parameter studied. The effect of each parameter is discussed, and suggestions are made for successfully fabricating viable block copolymer membranes.
Collapse
Affiliation(s)
- Anthony J Cooper
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
5
|
Blagojevic N, Müller M. Simulation of Membrane Fabrication via Solvent Evaporation and Nonsolvent-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57913-57927. [PMID: 37222486 PMCID: PMC10739593 DOI: 10.1021/acsami.3c03126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Block copolymer membranes offer a bottom-up approach to form isoporous membranes that are useful for ultrafiltration of functional macromolecules, colloids, and water purification. The fabrication of isoporous block copolymer membranes from a mixed film of an asymmetric block copolymer and two solvents involves two stages: First, the volatile solvent evaporates, creating a polymer skin, in which the block copolymer self-assembles into a top layer, comprised of perpendicularly oriented cylinders, via evaporation-induced self-assembly (EISA). This top layer imparts selectivity onto the membrane. Subsequently, the film is brought into contact with a nonsolvent, and the exchange between the remaining nonvolatile solvent and nonsolvent through the self-assembled top layer results in nonsolvent-induced phase separation (NIPS). Thereby, a macroporous support for the functional top layer that imparts mechanical stability onto the system without significantly affecting permeability is fabricated. We use a single, particle-based simulation technique to investigate the sequence of both processes, EISA and NIPS. The simulations identify a process window, which allows for the successful in silico fabrication of integral-asymmetric, isoporous diblock copolymer membranes, and provide direct insights into the spatiotemporal structure formation and arrest. The role of the different thermodynamic (e.g., solvent selectivity for the block copolymer components) and kinetic (e.g., plasticizing effect of the solvent) characteristics is discussed.
Collapse
Affiliation(s)
- Niklas Blagojevic
- Institute for Theoretical
Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical
Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Qian Z, Shi R, Lu ZY, Qian HJ. Horizontal to perpendicular transition of lamellar and cylinder phases in block copolymer films induced by interface segregation of single-chain nanoparticles during solvent evaporation. J Chem Phys 2023; 159:124901. [PMID: 38127373 DOI: 10.1063/5.0166202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
How to fabricate perpendicularly oriented domains (PODs) of lamellar and cylinder phases in block copolymer thin films remains a major challenge. In this work, via a coarse-grained molecular dynamics simulation study, we report a solvent evaporation strategy starting from a mixed solution of A-b-B-type diblock copolymers (DBCs) and single-chain nanoparticles (SCNPs) with the same composition, which is capable of spontaneously generating PODs in drying DBC films induced by the interface segregation of SCNPs. The latter occurs at both the free surface and substrate and, consequently, neutralizes the interface selectivity of distinct blocks in DBCs, leading to spontaneous formation of PODs at both interfaces. The interface segregation of SCNPs is related to the weak solvophilicity of the internal cross-linker units. A mean-field theory calculation demonstrates that the increase in the chemical potential of SCNPs in the bulk region drives their interface segregation along with solvent evaporation. We believe that such a strategy can be useful in regulating the PODs of DBC films in practical applications.
Collapse
Affiliation(s)
- Zhao Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rui Shi
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, Changchun 130012, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, Changchun 130012, China
| |
Collapse
|
7
|
Babutan I, Todor-Boer O, Atanase LI, Vulpoi A, Botiz I. Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers (Basel) 2023; 15:polym15081900. [PMID: 37112047 PMCID: PMC10145245 DOI: 10.3390/polym15081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In this study we have employed a polymer processing method based on solvent vapor annealing in order to condense relatively large amounts of solvent vapors onto thin films of block copolymers and thus to promote their self-assembly into ordered nanostructures. As revealed by the atomic force microscopy, a periodic lamellar morphology of poly(2-vinylpyridine)-b-polybutadiene and an ordered morphology comprised of hexagonally-packed structures made of poly(2-vinylpyridine)-b-poly(cyclohexyl methacrylate) were both successfully generated on solid substrates for the first time.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Otto Todor-Boer
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Adriana Vulpoi
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Babutan I, Todor-Boer O, Atanase LI, Vulpoi A, Simon S, Botiz I. Self-assembly of block copolymers on surfaces exposed to space-confined solvent vapor annealing. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Dreyer O, Ibbeken G, Schneider L, Blagojevic N, Radjabian M, Abetz V, Müller M. Simulation of Solvent Evaporation from a Diblock Copolymer Film: Orientation of the Cylindrical Mesophase. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Dreyer
- Institut für Membranforschung, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Gregor Ibbeken
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ludwig Schneider
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Niklas Blagojevic
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Maryam Radjabian
- Institut für Membranforschung, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Volker Abetz
- Institut für Membranforschung, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
- Institut für Physikalische Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Modeling the Phase Equilibria of Associating Polymers in Porous Media with Respect to Chromatographic Applications. Polymers (Basel) 2022; 14:polym14153182. [PMID: 35956697 PMCID: PMC9370872 DOI: 10.3390/polym14153182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Associating copolymers self-assemble during their passage through a liquid chromatography (LC) column, and the elution differs from that of common non-associating polymers. This computational study aims at elucidating the mechanism of their unique and intricate chromatographic behavior. We focused on amphiphilic diblock copolymers in selective solvents, performed the Monte Carlo (MC) simulations of their partitioning between a bulk solvent (mobile phase) and a cylindrical pore (stationary phase), and investigated the concentration dependences of the partition coefficient and of other functions describing the phase behavior. The observed abruptly changing concentration dependences of the effective partition coefficient demonstrate the significant impact of the association of copolymers with their partitioning between the two phases. The performed simulations reveal the intricate interplay of the entropy-driven and the enthalpy-driven processes, elucidate at the molecular level how the self-assembly affects the chromatographic behavior, and provide useful hints for the analysis of experimental elution curves of associating polymers.
Collapse
|
11
|
Guo W, Bai X, Zhang D, Wang R, Song P, He Y. Fabrication of hollow‐carved microspheres with excellent antibacterial activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenling Guo
- Key Lab. Eco‐functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou China
| | - Xue Bai
- Key Lab. Eco‐functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou China
| | - Duoxin Zhang
- Key Lab. Eco‐functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou China
| | - Rongmin Wang
- Key Lab. Eco‐functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou China
| | - Pengfei Song
- Key Lab. Eco‐functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou China
| | - Yufeng He
- Key Lab. Eco‐functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou China
| |
Collapse
|
12
|
Müller M, Abetz V. Nonequilibrium Processes in Polymer Membrane Formation: Theory and Experiment. Chem Rev 2021; 121:14189-14231. [PMID: 34032399 DOI: 10.1021/acs.chemrev.1c00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Porous polymer and copolymer membranes are useful for ultrafiltration of functional macromolecules, colloids, and water purification. In particular, block copolymer membranes offer a bottom-up approach to form isoporous membranes. To optimize permeability, selectivity, longevity, and cost, and to rationally design fabrication processes, direct insights into the spatiotemporal structure evolution are necessary. Because of a multitude of nonequilibrium processes in polymer membrane formation, theoretical predictions via continuum models and particle simulations remain a challenge. We compiled experimental observations and theoretical approaches for homo- and block copolymer membranes prepared by nonsolvent-induced phase separation and highlight the interplay of multiple nonequilibrium processes─evaporation, solvent-nonsolvent exchange, diffusion, hydrodynamic flow, viscoelasticity, macro- and microphase separation, and dynamic arrest─that dictates the complex structure of the membrane on different scales.
Collapse
Affiliation(s)
- Marcus Müller
- Georg-August Universität, Institut für Theoretische Physik, 37073 Göttingen, Germany
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institut für Membranforschung, 21502 Geesthacht, Germany.,Universität Hamburg, Institut für Physikalische Chemie, 20146 Hamburg, Germany
| |
Collapse
|
13
|
Liu Z, Wang Z, Yin Y, Jiang R, Li B. A simulation study of the self-assembly of ABC star terpolymers confined between two parallel surfaces. SOFT MATTER 2021; 17:5336-5348. [PMID: 33950058 DOI: 10.1039/d1sm00271f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied using a simulated annealing method. Several phase diagrams are constructed for systems with different bulk phases or with different interfacial interaction strength ratios in the space of surface distance (D) and surface preference for different arms, or in the space of D and the arm-length ratio x. Phases, including tiling patterns [6.6.6], [8.8.4], [8.6.6; 8.6.4], [8.6.6; 8.6.4; 10.6.6; 10.6.4] and hierarchical lamellar structures of lamella + cylinders and lamella + rods, are identified both in the bulk and in the films. Our results suggest that the self-assembled structure of a phase is largely controlled by x, while an increase of the interfacial interaction strength ratio shifts the x-window for each phase to the smaller x side. The orientation of a confined phase depends on the "effective surface preference" which is a combined effect of the interfacial interaction strength ratio, the surface preference, and the entropic preference. In the case of neutral or weak "effective surface preference", phases with a perpendicular orientation are usually observed, while in the case of strong "effective surface preference" phases with a perpendicular orientation or also with outermost wetting-layers can be frequently observed under some circumstances.
Collapse
Affiliation(s)
- Zhiyao Liu
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Zheng Wang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Yuhua Yin
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Run Jiang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| |
Collapse
|
14
|
Ogawa H, Takenaka M, Miyazaki T. Molecular Weight Effect on the Transition Processes of a Symmetric PS- b-P2VP during Spin-Coating. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Tsukasa Miyazaki
- Comprehensive Research Organization for Science and Society, Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
15
|
Tang Q, Müller M. Evaporation-Induced Liquid Expansion and Bubble Formation in Binary Mixtures. PHYSICAL REVIEW LETTERS 2021; 126:028003. [PMID: 33512230 DOI: 10.1103/physrevlett.126.028003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
We observe an anomalous liquid expansion after quenching a binary mixture at coexistence to low pressures in the vapor phase by numerical calculations. This evaporation-induced expansion can be attributed to the pressure imbalance near the liquid-vapor interface, which originates from the interplay between the complex thermodynamics of binary mixtures both in the vapor and liquid phases, as well as their dynamical asymmetries. In addition, careful modulation of the pressure quench in the vapor phase can result in spinodal bubble formation inside liquid phase. The results indicate that the thermodynamics-kinetics interplay could foster our fundamental understanding of the evaporation process and promote its practical applications.
Collapse
Affiliation(s)
- Qiyun Tang
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
16
|
|
17
|
Lee D, Lee J, Park J, Chang T. Orientation of Microphase in Polystyrene- b-polyisoprene Thin Film under Solvent Vapor Annealing. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Löfstrand A, Svensson J, Wernersson LE, Maximov I. Feature size control using surface reconstruction temperature in block copolymer lithography for InAs nanowire growth. NANOTECHNOLOGY 2020; 31:325303. [PMID: 32330916 DOI: 10.1088/1361-6528/ab8cef] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here we present a method to control the size of the openings in hexagonally organized BCP thin films of poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) by using surface reconstruction. The surface reconstruction is based on selective swelling of the P4VP block in ethanol, and its extraction to the surface of the film, resulting in pores upon drying. We found that the BCP pore diameter increases with ethanol immersion temperature. In our case, the temperature range 18 to 60 °C allowed fine-tuning of the pore size between 14 and 22 nm. A conclusion is that even though the molecular weight of the respective polymer blocks is fixed, the PS-b-P4VP pore diameter can be tuned by controlling temperature during surface reconstruction. These results can be used for BCP-based nanofabrication in general, and for vertical nanowire growth in particular, where high pattern density and diameter control are of importance. Finally, we demonstrate successful growth of indium arsenide InAs vertical nanowires by selective-area metal-organic vapor phase epitaxy (MOVPE), using a silicon nitride mask patterned by the proposed PS-b-P4VP surface reconstruction lithography method.
Collapse
|
19
|
Jung FA, Berezkin AV, Tejsner TB, Posselt D, Smilgies D, Papadakis CM. Solvent Vapor Annealing of a Diblock Copolymer Thin Film with a Nonselective and a Selective Solvent: Importance of Pathway for the Morphological Changes. Macromol Rapid Commun 2020; 41:e2000150. [DOI: 10.1002/marc.202000150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Florian A. Jung
- Technische Universität München Physik‐Department Physik der weichen Materie James‐Franck‐Str. 1 Garching 85748 Germany
| | - Anatoly V. Berezkin
- Technische Universität München Physik‐Department Physik der weichen Materie James‐Franck‐Str. 1 Garching 85748 Germany
| | - Tim B. Tejsner
- IMFUFA Department of Science and Environment Roskilde University P.O. Box 260 Roskilde 4000 Denmark
| | - Dorthe Posselt
- IMFUFA Department of Science and Environment Roskilde University P.O. Box 260 Roskilde 4000 Denmark
| | - Detlef‐M. Smilgies
- Cornell High Energy Synchrotron Source (CHESS) Wilson Laboratory Cornell University Ithaca NY 14853 USA
| | - Christine M. Papadakis
- Technische Universität München Physik‐Department Physik der weichen Materie James‐Franck‐Str. 1 Garching 85748 Germany
| |
Collapse
|
20
|
Sankhala K, Koll J, Abetz V. Facilitated Structure Formation in Isoporous Block Copolymer Membranes upon Controlled Evaporation by Gas Flow. MEMBRANES 2020; 10:E83. [PMID: 32353997 PMCID: PMC7281245 DOI: 10.3390/membranes10050083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/26/2023]
Abstract
The conventional fabrication of isoporous membranes via the evaporation-induced self-assembly of block copolymers in combination with non-solvent induced phase separation (SNIPS) is achieved under certain environmental conditions. In this study, we report a modification in the conventional fabrication process of (isoporous) flat sheet membranes in which the self-assembly of block copolymers is achieved by providing controlled evaporation conditions using gas flow and the process is introduced as gSNIPS. This fabrication approach can not only trigger and control the microphase separation but also provides isoporous structure formation in a much broader range of solution concentrations and casting parameters, as compared to fabrication under ambient, uncontrolled conditions. We systematically investigated the structure formation of the fabrication of integral asymmetric isoporous membranes by gSNIPS. A quantitative correlation between the evaporation conditions (causing solvent evaporation and temperature drop) and the self-assembly of block copolymers beginning from the top layer up to a certain depth, orientation of pores in the top layer and the substructure morphology has been discussed empirically.
Collapse
Affiliation(s)
- Kirti Sankhala
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Joachim Koll
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Volker Abetz
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
- Institute of Physical Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
21
|
Elder B, Neupane R, Tokita E, Ghosh U, Hales S, Kong YL. Nanomaterial Patterning in 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907142. [PMID: 32129917 DOI: 10.1002/adma.201907142] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Indexed: 05/17/2023]
Abstract
The synergistic integration of nanomaterials with 3D printing technologies can enable the creation of architecture and devices with an unprecedented level of functional integration. In particular, a multiscale 3D printing approach can seamlessly interweave nanomaterials with diverse classes of materials to impart, program, or modulate a wide range of functional properties in an otherwise passive 3D printed object. However, achieving such multiscale integration is challenging as it requires the ability to pattern, organize, or assemble nanomaterials in a 3D printing process. This review highlights the latest advances in the integration of nanomaterials with 3D printing, achieved by leveraging mechanical, electrical, magnetic, optical, or thermal phenomena. Ultimately, it is envisioned that such approaches can enable the creation of multifunctional constructs and devices that cannot be fabricated with conventional manufacturing approaches.
Collapse
Affiliation(s)
- Brian Elder
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Rajan Neupane
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eric Tokita
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Udayan Ghosh
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Samuel Hales
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yong Lin Kong
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
22
|
|
23
|
Müller M. Process-directed self-assembly of copolymers: Results of and challenges for simulation studies. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101198] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Xu X, Man X, Doi M, Ou-Yang ZC, Andelman D. Defect Removal by Solvent Vapor Annealing in Thin Films of Lamellar Diblock Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xinpeng Xu
- Physics Program, Guangdong Technion − Israel Institute of Technology, Shantou, Guangdong 515063, China
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Xingkun Man
- Center of Soft Matter Physics and Its Applications and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Masao Doi
- Center of Soft Matter Physics and Its Applications and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Zhong-can Ou-Yang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
25
|
Tang Q, Müller M, Li CY, Hu W. Anomalous Ostwald Ripening Enables 2D Polymer Crystals via Fast Evaporation. PHYSICAL REVIEW LETTERS 2019; 123:207801. [PMID: 31809069 DOI: 10.1103/physrevlett.123.207801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate by molecular simulations that the Ostwald ripening of crystalline polymer nuclei within the fast-evaporation-induced 2D skin layer is retarded at suitable temperatures and evaporation rates. Such an anomalous ripening can be attributed to the interplay between the thermodynamically driven diffusion of noncrystalline fragments toward the growing nuclei and the diffusive current away from the free surface caused by the densification in the nonequilibrium skin layer. The growth orientation of the nuclei inside the skin plane can be adjusted during this anomalous ripening process, which is beneficial for fabricating 2D polymer crystals.
Collapse
Affiliation(s)
- Qiyun Tang
- Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Wenbing Hu
- Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
26
|
Affiliation(s)
- Gaoyuan Wang
- Institute for Theoretical Physics, Georg-August-University, 37077 Göttingen, Germany
| | - Yongzhi Ren
- Institute for Theoretical Physics, Georg-August-University, 37077 Göttingen, Germany
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Zheng L, Wang Z, Yin Y, Jiang R, Li B. Formation Mechanisms of Porous Particles from Self-Assembly of Amphiphilic Diblock Copolymers inside an Oil-in-Water Emulsion Droplet upon Solvent Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5902-5910. [PMID: 30950621 DOI: 10.1021/acs.langmuir.9b00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The formation mechanisms of porous particles from self-assembly of amphiphilic diblock copolymers inside an oil-in-water emulsion droplet upon evaporation of the organic solvent are investigated based on Monte Carlo simulations for the first time. A morphological diagram of particles is constructed as a function of the surfactant concentration (φ) and the copolymer composition characterized by the volume fraction of the hydrophilic B block ( fB). Particles with various morphologies are predicted. Morphological sequences from non-porosity to closed-porosity to capsules and finally to open-porosity particles are usually observed with increasing φ when fB ≤ 1/2, with the only exception that capsules do not occur when fB = 1/6. Furthermore, the critical φ value for a given morphological transition usually decreases with increasing fB. Micelles are always observed at higher φ regions when fB > 1/2. It is found that the specific surface area falls on almost the same regime for particles with the same kind of morphology, indicating that the morphology of a particle largely determines its specific surface area. The chain stretching varies with the particle morphology. It is the presence of the surfactant that makes the formation of porous particles possible, while when φ > 0, multiple morphological transitions can be induced by changing fB. In the process of organic solvent removal, the value of fB may affect the shape of pores inside the droplet and hence leads to the fB dependence of the morphological sequences. When the solvent evaporation is not too fast, the resulting morphological sequence does not depend on the evaporation rate. Our results are compared with related experiments.
Collapse
Affiliation(s)
- Lingfei Zheng
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Zheng Wang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Yuhua Yin
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Run Jiang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
28
|
Schneider LY, Müller M. Engineering Scale Simulation of Nonequilibrium Network Phases for Battery Electrolytes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludwig Y. Schneider
- Institute for Theoretical Physics, Georg-August-Universität, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
29
|
Ogawa H, Takenaka M, Miyazaki T, Kabe T, Kanaya T. Order–Order Transition Processes of Thin-Film Symmetric and Asymmetric PS-b-P2VP during Spin Coating. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- JST, PRESTO, 4-1-8Honcho, Kawaguchi, Saitama, 332-001, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Tsukasa Miyazaki
- Comprehensive Research Organization for Science and Society, Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taizo Kabe
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Toshiji Kanaya
- High Energy Accelerator Research Organization, Tsukuba, Ibaraki 319-1195, Japan
| |
Collapse
|
30
|
Lu KY, Wang HF, Lin JW, Chuang WT, Georgopanos P, Avgeropoulos A, Shi AC, Ho RM. Self-Alignment of Cylinder-Forming Silicon-Containing Block Copolymer Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Hsiao-Fang Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Jheng-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Wei-Tsung Chuang
- National Synchrotron
Radiation Research Center, Hsinchu 30076, Taiwan
| | - Prokopios Georgopanos
- Department of Materials Science Engineering, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Apostolos Avgeropoulos
- Department of Materials Science Engineering, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
31
|
Modi A, Karim A, Tsige M. Solvent and Substrate Induced Synergistic Ordering in Block Copolymer Thin Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arvind Modi
- College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Alamgir Karim
- College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|