1
|
Aitipamula S, Hadia NJ, Vasantha VA, Parthiban A. An Exceptionally Salt Tolerant Copoly(Maleimide Sulfobetaine) - Structural Requirements for Ultra-Salt Tolerance. Macromol Rapid Commun 2024:e2400499. [PMID: 39363615 DOI: 10.1002/marc.202400499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Zwitterionic polymers are an important class of polymers with far-ranging applications. In the widely studied poly(meth)acrylate and poly(meth) acrylamide-based zwitterions, properties can be tuned by changing the nature of substituents attached to ammonium ions. However, these changes influenced salt tolerance of zwitterionic polymers only to a limited extent. Upon adding salt these polymers expanded in solution initially. Further increase in salt concentration caused the polymer chains to shrink similar to the common water soluble, uncharged polymers thereby deteriorating the viscosity of aqueous solutions. In contrast to the conventional poly(meth)acrylate and poly(meth)acrylamide-based zwitterions, zwitterionic copolymaleimides showed substituent dependent salt-tolerant nature. In the absence of any substituent on the polymer backbone such as zwitterionic poly(ethylene-alt-maleimide) (ZI-PEMA) the viscosity of salt solutions increased both with the increasing salt concentration as well as the concentration of polymer. This is likely due to the continuous expansion of polymer coil in salt solutions with increasing salt concentration caused primarily by the rigidity of the polymer backbone. ZI-PEMA also enhanced the saturation limit of mono- and divalent salts like sodium chloride and hydrated calcium bromide in water. This property is useful for various applications like fish curing, for making high-density fluids, refrigeration, etc. across various industrial sectors.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Nanji J Hadia
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore, 627833, Singapore
- Department of Mechanical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Vivek A Vasantha
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore, 627833, Singapore
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Anbanandam Parthiban
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore, 627833, Singapore
| |
Collapse
|
2
|
Hoover SC, Margossian KO, Muthukumar M. Theory and quantitative assessment of pH-responsive polyzwitterion-polyelectrolyte complexation. SOFT MATTER 2024; 20:7199-7213. [PMID: 39222025 DOI: 10.1039/d4sm00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We introduce a theoretical framework to describe the pH-sensitive phase behavior of polyzwitterion-polyelectrolyte complex coacervates that reasonably captures the phenomenon from recent experimental observations. The polyzwitterion is described by a combinatorial sequence of the four states in which each zwitterionic monomer can occupy: dipolar, quasi-cationic, quasi-anionic, and fully neutralized. We explore the effects of various modifiable chemical and physical properties of the polymers-such as, pKa of the pH-active charged group on the zwitterion, equilibrium constant of salt condensation on the permanently charged group on the zwitterion, degrees of polymerization, hydrophobicity (via the Flory-Huggins interaction parameter), and dipole lengths-on the window of complexation across many stoichiometric mixing ratios of polyzwitterion and polyelectrolyte. The properties that determine the net charge of the polyzwitterion have the strongest effect on the pH range in which polyzwitterion-polyelectrolyte complexation occurs. We finish with general guidance for those interested in molecular design of polyzwitterion-polyelectrolyte complex coacervates and opportunities for future investigation.
Collapse
Affiliation(s)
- Samuel C Hoover
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Khatcher O Margossian
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Rush University Medical Center and John H. Stroger Hospital of Cook County, both in Chicago, IL 60612, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Zhang C, Zhou J, Wang Y. Effects of Carbon Spacer Length on Conformational Transitions and Protein Adsorption of Polyzwitterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13365-13374. [PMID: 38904255 DOI: 10.1021/acs.langmuir.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The properties of polyzwitterions are closely linked to their carbon spacer length (CSL) between oppositely charged groups. A thorough understanding of the effect of CSL on the properties of polyzwitterion-functionalized membranes is important for their fouling resistance and separation performances. In this work, polyzwitterion-functionalized membranes with different CSLs are prepared by coupling selective swelling-induced pore generation with zwitterionization, and the investigation is focused on comprehending the molecular mechanisms underlying protein resistance and conformational transitions within polyzwitterions under varying CSLs. The zwitterionized films show an enhancement in the surface negative potential with the increase of CSL, attributed to the negatively charged groups distanced from the positively charged groups. Quartz crystal microbalance with dissipation (QCM-D) demonstrates that zwitterionized films with different CSLs display distinct levels of resistance to protein adsorption. The trimethylamine N-oxide-derived polymer (PTMAO, CSL = 0) zwitterionized film shows the highest resistance compared to the poly(3-[dimethyl(2'-methacryloyloxyethyl] ammonio) ethanesulfonate (PMAES, CSL = 2) zwitterionized film and the poly(sulfobetaine methacrylate) (PSBMA, CSL = 3) zwitterionized film, owing to its electrical neutrality and pronounced hydrophilicity. Moreover, analysis of the anti-polyelectrolyte behaviors reveals that PTMAO does not undergo a significant conformation transition in deionized water and salt solutions, while the conformations of PMAES and PSBMA display to be more salt-dependent as the CSL increases, attributed to their increased polarization and dipole moment. As a result, the permeability of zwitterionized membranes exhibits enhanced salt responsiveness with the increase in CSL. The findings of this study are expected to facilitate the design of adsorption-resistant surfaces desired in diverse fields.
Collapse
Affiliation(s)
- Chenxu Zhang
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
4
|
Pathan S, Jayakannan M. Zwitterionic Strategy to Stabilize Self-Immolative Polymer Nanoarchitecture under Physiological pH for Drug Delivery In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2304599. [PMID: 38574242 DOI: 10.1002/adhm.202304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes. To achieve this goal, biodegradable polycaprolactone (PCL) platform is chosen, and structure-engineered several di- and triblock architectures to arrive the precise macromolecular geometry. The hydrophobic-PCL core and hydrophilic anionic-PCL block at the periphery shield PAEs against autodegradation, thereby ensuring stability under physiological pH in PBS, FBS, cell culture medium and bloodstream. The clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared IR-780 biomarker is encapsulated to study their biological actions by in vitro live cancer cells and in vivo bioimaging in live animals. These zwitterions are biocompatible, nonhemolytic, and real-time in vitro live-cell confocal studies have confirmed their internalization and enzymatic biodegradation in the endo-lysosomal compartments to deliver the payload. In vivo bioimaging establishes their prolonged blood circulation for over 72 h, and the biodistribution analysis reveals the accumulation of nanoparticles predominantly in the excretory organs.
Collapse
Affiliation(s)
- Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
5
|
Ziemann E, Coves T, Oren YS, Maman N, Sharon-Gojman R, Neklyudov V, Freger V, Ramon GZ, Bernstein R. Pseudo-bottle-brush decorated thin-film composite desalination membranes with ultrahigh mineral scale resistance. SCIENCE ADVANCES 2024; 10:eadm7668. [PMID: 38781328 PMCID: PMC11114193 DOI: 10.1126/sciadv.adm7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
High water recovery is crucial to inland desalination but is impeded by mineral scaling of the membrane. This work presents a two-step modification approach for grafting high-density zwitterionic pseudo-bottle-brushes to polyamide reverse osmosis membranes to prevent scaling during high-recovery desalination of brackish water. Increasing brush density, induced by increasing reaction time, correlated with reduced scaling. High-density grafting eliminated gypsum scaling and almost completely prevented silica scaling during desalination of synthetic brackish water at a recovery ratio of 80%. Moreover, scaling was effectively mitigated during long-term desalination of real brackish water at a recovery ratio of 90% without pretreatment or antiscalants. Molecular dynamics simulations reveal the critical dependence of the membrane's silica antiscaling ability on the degree to which the coating screens the membrane surface from readily forming silica aggregates. This finding highlights the importance of maximizing grafting density for optimal performance and advanced antiscaling properties to allow high-recovery desalination of complex salt solutions.
Collapse
Affiliation(s)
- Eric Ziemann
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Tali Coves
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Yaeli S. Oren
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Guy Z. Ramon
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Department of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
6
|
Lin CH, Wu JG, Lin HH, Luo SC. Electrified Interactions of Polyzwitterions with Charged Surfaces: Role of Dipole Orientation and Surface Potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7653-7660. [PMID: 38532553 PMCID: PMC11008249 DOI: 10.1021/acs.langmuir.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
The zwitterionic groups possess strong dipole moments, leading to inter- or intrachain interactions among zwitterionic polymers. This study aims to demonstrate the interaction of polyzwitterions poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and poly(carboxybetaine methacrylate) (PCBMA) with electrified surfaces, despite their electrically neutral nature. We studied the adsorption of polyzwitterions and their monomers on electrified surfaces by using an electrochemical quartz crystal microbalance with dissipation (EQCM-D). The interaction between zwitterionic molecules and charged surfaces is explored by adjusting the surface potentials. Interestingly, the adsorption of polyzwitterions can be influenced by external potential, primarily due to the formation of polyzwitterions restricting the mobility of zwitterionic groups, affecting the adsorption behavior of polyzwitterions based on the surface potential. The impact is determined by the arrangement of positive and negative ions within the zwitterionic groups, which are the dipole orientation. Additionally, surface potentials determine the adsorption rate, amount, and chain conformation of the adsorbed thin polyzwitterion layers. The effect of ionic strength was investigated by introducing electrolytes into the aqueous solutions to assess the range of influenced surface potentials.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jhih-Guang Wu
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsun-Hao Lin
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
7
|
Basu T, Das S, Majumdar S. Elucidating the influence of electrostatic force on the re-arrangement of H-bonds of protein polymers in the presence of salts. SOFT MATTER 2024; 20:2361-2373. [PMID: 38372459 DOI: 10.1039/d3sm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyampholytes/proteins have an intriguing network of hydrogen bonds (H-bonds), especially their secondary structure, which plays a crucial role in determining the conformational stability of the polymer. The changes in protein secondary structure in the protein-salt system have been extensively deciphered by researchers, yet their pathways for breakage and recreation are unknown. Understanding the mechanism of protein conformational changes towards their biological activities, like protein folding, remains one of the main challenges and requires multiscale analysis of this strongly correlated system. Herein, salts have been used to reveal the re-arrangement behavior in the H-bond network of proteins under the influence of electrostatic interactions, as the strength of electrostatic forces is much stronger than that of H-bonds. At lower salt concentrations, there are negligible changes in the secondary structures as the electrostatic forces induced by the salt ions are less. Later, the existing H-bonds break and reconstruct new H-bonds at higher salt concentrations due to the influence of the stronger electrostatic interaction induced by the large number of salt ions. Molecular dynamics (MD) simulations and FTIR studies have been used rigorously to decipher the reason behind the re-arrangement of the H-bonds within gelatin (protein). The re-arrangement in the H-bond has also been observed with time from simulations and experiments. Thus, this study could provide a fresh perspective on the conformational changes of polyampholytes/proteins and will also influence the studies of protein folding-unfolding interaction in the presence of salt ions.
Collapse
Affiliation(s)
- Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| |
Collapse
|
8
|
Das S, Basu T, Majumdar S. Molecular interactions of acids and salts with polyampholytes. J Chem Phys 2024; 160:054901. [PMID: 38299631 DOI: 10.1063/5.0190821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
The Hofmeister series characterizes the ability of salt anions to precipitate polyampholytes/proteins. However, the variation of protein size in the bulk solution of acids and the effect of salts on the same have not been studied well. In this article, the four acids (CH3COOH, HNO3, H2SO4, and HCl) and their effects on the hydrodynamic radius (RH) of gelatin in the bulk solution are investigated. The effects of Na salt with the same anions are also considered to draw a comparison between the interactions of acids and salts with polyampholytes. It is suggested that the interactions of polyampholytes with acids are different from those of salts. The interaction series of polyampholytes with acids with respect to the RH of the polyampholyte is CH3COO->NO3->Cl->SO42- whereas the interaction series with salts is SO42->CH3COO->Cl->NO3-. These different interactions are due to equilibration between acid dissociation and protonation of polyampholytes. Another important factor contributing to the interactions in weak acids is the fact that undissociated acid hinders the movement of dissociated acid. Experiments and simulations were performed to understand these interactions, and the results were identical in terms of the trend in RH (from the experiments) and the radius of gyration (Rg) (from the simulations). It is concluded that the valence of ions and dissociation affect the interaction in the case of acids. However, the interactions are influenced by the kosmotropic and chaotropic effect, hydration, and mobility in the case of salts.
Collapse
Affiliation(s)
- Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| |
Collapse
|
9
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
10
|
Lim J, Matsuoka H, Kinoshita Y, Yusa SI, Saruwatari Y. The Effect of Block Ratio and Structure on the Thermosensitivity of Double and Triple Betaine Block Copolymers. Molecules 2024; 29:390. [PMID: 38257304 PMCID: PMC10820771 DOI: 10.3390/molecules29020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
AB-type and BAB-type betaine block copolymers composed of a carboxybetaine methacrylate and a sulfobetaine methacrylate, PGLBT-b-PSPE and PSPE-b-PGLBT-b-PSPE, respectively, were synthesized by one-pot RAFT polymerization. By optimizing the concentration of the monomer, initiator, and chain transfer agent, block extension with precise ratio control was enabled and a full conversion (~99%) of betaine monomers was achieved at each step. Two sets (total degree of polymerization: ~300 and ~600) of diblock copolymers having four different PGLBT:PSPE ratios were prepared to compare the influence of block ratio and molecular weight on the temperature-responsive behavior in aqueous solution. A turbidimetry and dynamic light scattering study revealed a shift to higher temperatures of the cloud point and micelle formation by increasing the ratio of PSPE, which exhibit upper critical solution temperature (UCST) behavior. PSPE-dominant diblocks created spherical micelles stabilized by PGLBT motifs, and the transition behavior diminished by decreasing the PSPE ratio. No particular change was found in the diblocks that had an identical AB ratio. This trend reappeared in the other set whose entire molecular weight approximately doubled, and each transition point was not recognizably impacted by the total molecular weight. For triblocks, the PSPE double ends provided a higher probability of interchain attractions and resulted in a more turbid solution at higher temperatures, compared to the diblocks which had similar block ratios and molecular weights. The intermediates assumed as network-like soft aggregates eventually rearranged to monodisperse flowerlike micelles. It is expected that the method for obtaining well-defined betaine block copolymers, as well as the relationship of the block ratio and the chain conformation to the temperature-responsive behavior, will be helpful for designing betaine-based polymeric applications.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Yusuke Kinoshita
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd., 7-20 Azuchi-machi, 1chome, Chuo-ku, Osaka 541-0052, Japan;
| |
Collapse
|
11
|
Mengel SD, Guo W, Wu G, Finlay JA, Allen P, Clare AS, Medhi R, Chen Z, Ober CK, Segalman RA. Diffusely Charged Polymeric Zwitterions as Loosely Hydrated Marine Antifouling Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:282-290. [PMID: 38131624 DOI: 10.1021/acs.langmuir.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Polymeric zwitterions exhibit exceptional fouling resistance through the formation of a strongly hydrated surface of immobilized water molecules. While being extensively tested for their performance in biomedical, membrane, and, to a lesser extent, marine environments, few studies have investigated how the molecular design of the zwitterion may enhance its performance. Furthermore, while theories of zwitterion antifouling mechanisms exist for molecular-scale foulant species (e.g., proteins and small molecules), it remains unclear how molecular-scale mechanisms influence the micro- and macroscopic interactions of relevance for marine applications. The present study addresses these gaps through the use of a modular zwitterion chemistry platform, which is characterized by a combination of surface-sensitive sum frequency generation (SFG) vibrational spectroscopy and marine assays. Zwitterions with increasingly delocalized cations demonstrate improved fouling resistance against the green alga Ulva linza. SFG spectra correlate well with the assay results, suggesting that the more diffuse charges exhibit greater surface hydration with more bound water molecules. Hence, the number of bound interfacial water molecules appears to be more influential in determining the marine antifouling activities of zwitterionic polymers than the binding strength of individual water molecules at the interface.
Collapse
Affiliation(s)
- Shawn D Mengel
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Wen Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Guangyao Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Allen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Riddhiman Medhi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
13
|
Luc VS, Lin CC, Wang SY, Lin HP, Li BR, Chou YN, Chang CC. Antifouling Properties of Amine-Oxide-Containing Zwitterionic Polymers. Biomacromolecules 2023; 24:5467-5477. [PMID: 37862241 DOI: 10.1021/acs.biomac.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Biofouling due to nonspecific proteins or cells on the material surfaces is a major challenge in a range of applications such as biosensors, medical devices, and implants. Even though poly(ethylene glycol) (PEG) has become the most widely used stealth material in medical and pharmaceutical products, the number of reported cases of PEG-triggered rare allergic responses continues to increase in the past decades. Herein, a new type of antifouling material poly(amine oxide) (PAO) has been evaluated as an alternative to overcome nonspecific foulant adsorption and impart comparable biocompatibility. Alkyl-substituted PAO containing diethyl, dibutyl, and dihexyl substituents are prepared, and their solution properties are studied. Photoreactive copolymers containing benzophenone as the photo-cross-linker are prepared by reversible addition-fragmentation chain-transfer polymerization and fully characterized by gel permeation chromatography and dynamic light scattering. Then, these water-soluble polymers are anchored onto a silicon wafer with the aid of UV irradiation. By evaluating the fouling resistance properties of these modified surfaces against various types of foulants, protein adsorption and bacterial attachment assays show that the cross-linked PAO-modified surface can efficiently inhibit biofouling. Furthermore, human blood cell adhesion experiments demonstrate that our PAO polymer could be used as a novel surface modifier for biomedical devices.
Collapse
Affiliation(s)
- Van-Sieu Luc
- Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chien-Cheng Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Shao-Yu Wang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Hsiu-Pen Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ying-Nien Chou
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
14
|
Jin X, Fan Z, Liu Y, Jiang C, Zhang W, Yin P, Sun T. Correlation of Structure and Dynamics Behavior in Polyzwitterions: From Concentrated Solution to Gel-Like State. Macromol Rapid Commun 2023; 44:e2300418. [PMID: 37625423 DOI: 10.1002/marc.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Indexed: 08/27/2023]
Abstract
The dynamic behaviors of polyzwitterions, poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate) (PSBP), are investigated using dynamic light scattering, small angle X-ray scattering, and rheology. The findings reveal two relaxation modes, including a fast and a slow mode, which are observed in both solution state and gel-like state, with varying polyzwitterion concentration (CP ) and NaCl concentration (CNaCl ). As CP and CNaCl increasing, a slower slow mode and a faster fast mode are observed. The fast mode corresponds to the diffusion of chains, while the slow mode arises from chain aggregations. In solutions, the slow mode is dominated by the diffusion of chain aggregations. However, in the gel-like state, the "cage network" traps aggregations more densely, leading to their dynamic behavior being dominated by enhanced topological entanglements and ionic interactions. This difference highlights the unique nature of the slow relaxation mode between concentrated solution and gel-like state, arising from changes in the average distance between chain aggregations resulting from increased CP and CNaCl concentrations.
Collapse
Affiliation(s)
- Xiaolin Jin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhiwei Fan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Chuanxia Jiang
- Guangdong Marubi Biotechnology Co., Ltd., No 92 Banhe Road, Huangpu District, Guangzhou, 510700, China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
15
|
Clark JA, Prabhu VM, Douglas JF. Molecular Dynamics Simulation of the Influence of Temperature and Salt on the Dynamic Hydration Layer in a Model Polyzwitterionic Polymer PAEDAPS. J Phys Chem B 2023; 127:8185-8198. [PMID: 37668318 PMCID: PMC10578162 DOI: 10.1021/acs.jpcb.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We investigate the hydration of poly(3-[2-(acrylamido) ethyldimethylammonio] propanesulfonate) over a range of temperatures in pure water and with the inclusion of 0.1 mol/L NaCl using atomistic molecular dynamics simulation. Drawing on concepts drawn from the field of glass-forming liquids, we use the Debye-Waller parameter () for describing the water mobility gradient around the polybetaine backbone extending to an overall distance ≈18 Å. The water mobility in this layer is defined through the mean-square water molecule displacement at a time on the order of water's β-relaxation time. The brushlike topology of polybetaines leads to two regions in the dynamic hydration layer. The inner region of ≈10.5 Å is explored by pendant group conformational motions, and the outer region of ≈7.5 Å represents an extended layer of reduced water mobility relative to bulk water. The dynamic hydration layer extends far beyond the static hydration layer, adjacent to the polymer.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Pickett PD, Ma Y, Prabhu VM. Polyzwitterion fast and slow mode behavior are coupled to phase separation as observed by dynamic laser light scattering. J Chem Phys 2023; 159:104902. [PMID: 37694748 DOI: 10.1063/5.0162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
A model zwitterionic polysulfobetaine, poly(3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate) (pAPAPS), phase separates upon cooling and exhibits an upper critical solution temperature (UCST) behavior with no added salt in deuterium oxide solutions. Dynamic light scattering measurements indicate the presence of distinct fast and slow diffusive modes, where the fast mode is interpreted as a collective diffusion coefficient and the slow mode is attributed to the diffusion of multi-chain dynamic clusters. The relative population of fast and slow modes varies systematically with temperature and concentration. A clustering temperature (T*) was assigned when the slow mode first appeared upon cooling. The slow mode then increases in relative scattering amplitude as the phase boundary is approached. The fast mode exhibits a concentration dependence above T* consistent with the virial expansion in the collective diffusion. The sign of the virial coefficient (kd) is negative, even in the good solvent region above the expected Flory temperature (Θ ≈ 39 °C), a behavior distinct from synthetic neutral polymers in organic solvents. The onset of multi-chain clustering at T < T* coincides with the poor solvent regime (T < Θ). Attractive dipolar interactions due to the zwitterionic sulfobetaine groups in pAPAPS are suggested as the origin of the multi-chain clusters with no salt. Upon the addition of 100 mM NaCl, the slow mode is suppressed, and the hydrodynamic radius is consistent with polyzwitterion chain dimensions in a dilute solution. We find that concentration dependent diffusion is highly linked to the theta temperature and the emergence of dynamic clusters as the polymer goes from good to poor solvent on approach to the UCST. The slow mode in the semidilute regime is reported along with preliminary small-angle neutron scattering data that show salt reduces clustering and leads to predominantly chain scattering.
Collapse
Affiliation(s)
- Phillip D Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vivek M Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
17
|
Liu Z, Keum JK, Li T, Chen J, Hong K, Wang Y, Sumpter BG, Advincula R, Kumar R. Anti-polyelectrolyte and polyelectrolyte effects on conformations of polyzwitterionic chains in dilute aqueous solutions. PNAS NEXUS 2023; 2:pgad204. [PMID: 37424896 PMCID: PMC10323900 DOI: 10.1093/pnasnexus/pgad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Polyzwitterions (PZs) are considered as model synthetic analogs of intrinsically disordered proteins. Based on this analogy, PZs in dilute aqueous solutions are expected to attain either globular (i.e. molten, compact) or random coil conformations. Addition of salt is expected to open these conformations. To the best of our knowledge, these hypotheses about conformations of PZs have never been verified. In this study, we test these hypotheses by studying effects of added salt [potassium bromide (KBr)] on gyration and hydrodynamic radii of poly(sulfobetaine methacrylate) in dilute aqueous solutions using dynamic light scattering and small-angle X-ray scattering, respectively. Effects of zwitteration are revealed by direct comparisons of the PZs with the polymers of the same backbone but containing (1) no explicit charges on side groups such as poly(2-dimethylaminoethyl methacrylate)s and (2) explicit cationic side groups with tertiary amino bromide pendants. Zeta-potential measurements, transmission electron microscopy, and ab initio molecular dynamics simulations reveal that the PZs acquire net positive charge in near salt-free conditions due to protonation but retain coiled conformations. Added KBr leads to nonmonotonic changes exhibiting an increase followed by a decrease in radius of gyration (and hydrodynamic radius), which are called antipolyelectrolyte and polyelectrolyte effects, respectively. Charge regulation and screening of charge-charge interactions are discussed in relation to the antipolyelectrolyte and polyelectrolyte effects, respectively, which highlight the importance of salt in affecting net charge and conformations of PZs.
Collapse
Affiliation(s)
| | | | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rigoberto Advincula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
18
|
He Q, Qiao Y, Medina Jimenez C, Hackler R, Martinson ABF, Chen W, Tirrell MV. Ion Specificity Influences on the Structure of Zwitterionic Brushes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Qiming He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Yijun Qiao
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Carlos Medina Jimenez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Ryan Hackler
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alex B. F. Martinson
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Hegaard F, Biro R, Ehtiati K, Thormann E. Ion-Specific Antipolyelectrolyte Effect on the Swelling Behavior of Polyzwitterionic Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1456-1464. [PMID: 36656651 DOI: 10.1021/acs.langmuir.2c02798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we systematically investigate the interactions between mobile ions generated from added salts and immobile charges within a sulfobetaine-based polyzwitterionic film in the presence of five salts (KCl, KBr, KSCN, LiCl, and CsCl). The sulfobetaine groups contain quaternary alkylammonium and sulfonate groups, giving the positive and negative charges. The swelling of the zwitterionic film in the presence of different salts is compared with the swelling behavior of a polycationic or polyanionic film containing the same charged groups. For such a comparative study, we design cross-linked terpolymer films with similar thicknesses, cross-link densities, and charge fractions, but with varying charged moieties. While the addition of salt in general leads to a collapse of both cationic and anionic films, the presence of specific types of mobile anions (Cl-, Br-, and SCN-) considerably influences the swelling behavior of polycationic films. We attribute this observation to a different degree of ion-pair formations between the different types of anionic counterions and the immobile cationic quaternary alkylammonium groups in the films where highly polarizable counterions such as SCN- lead to a high degree of ion pairing and less polarizable counterions, such as Cl-, cause a low degree of ion pairing. Conversely, we do not observe any substantial effect of varying the type of cationic counterions (K+, Li+, and Cs+), which we assign to the lack of ion pairing between the weakly polarizable cations and the immobile anionic sulfonate groups in the films. In addition, we observe that the zwitterionic films swell with increasing ionic strength and the degree of swelling is anion dependent, which is in agreement with previous reports on the "antipolyelectrolyte effect". Herein, we explain this ion-specific swelling behavior with the different cation and anion abilities to form ion pairs with quaternary alkylammonium and sulfonate in the sulfobetaine groups.
Collapse
Affiliation(s)
- Frederik Hegaard
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Robert Biro
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Khakzad F, Dewangan NK, Li TH, Safi Samghabadi F, Herrera Monegro R, Robertson ML, Conrad JC. Fouling Resistance and Release Properties of Poly(sulfobetaine) Brushes with Varying Alkyl Chain Spacer Lengths and Molecular Weights. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2009-2019. [PMID: 36533943 DOI: 10.1021/acsami.2c16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We examined the effects of alkyl carbon spacer length (CSL) and molecular weight on fouling resistance and release properties of zwitterionic poly(sulfobetaine methacrylate) brushes. Using surface-initiated atom transfer radical polymerization, we synthesized two series of brushes with CSL = 3 and 4 and molecular weight from 19 to 1500 kg ·mol-1, corresponding to dry brush thickness from around 6 to 180 nm. The brush with CSL = 3 was nearly completely wet with water (independent of molecular weight), whereas the brush with CSL = 4 exhibited a strong increase in water contact angle with molecular weight. Though the two-brush series had distinct wetting properties, both series of brushes exhibited similarly great resistance against fouling by Staphylococcus epidermidis bacteria and Aspergillus niger fungi spores when submerged in water, indicating that neither molecular weight nor CSL strongly affected the antifouling behavior. We also compared the efficacy of brushes against fouling by fungi and silicon oil in air. Brushes grafted to filter paper were strongly fouled by fungi and silicon oil in air. Grafting the polymers to the filter paper, however, greatly enhanced removal of the foulant upon rinsing. The removal of fungi and silicon oil when rinsed with a salt solution was enhanced by 219 and 175%, respectively, as compared to a blank filter paper control. Thus, our results indicate that these zwitterionic brushes can promote foulant removal for dry applications in addition to their well-known fouling resistance in submerged conditions.
Collapse
Affiliation(s)
- Fahimeh Khakzad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Narendra K Dewangan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Tzu-Han Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Farshad Safi Samghabadi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Ronard Herrera Monegro
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Megan L Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
21
|
Paganini C, Capasso Palmiero U, Picciotto S, Molinelli A, Porello I, Adamo G, Manno M, Bongiovanni A, Arosio P. High-Yield Separation of Extracellular Vesicles Using Programmable Zwitterionic Coacervates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204736. [PMID: 36367966 DOI: 10.1002/smll.202204736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Programmable coacervates based on zwitterionic polymers are designed as dynamic materials for ion exchange bioseparation. These coacervates are proposed as promising materials for the purification of soft nanoparticles such as liposomes and extracellular vesicles (EVs). It is shown that the stimulus-responsiveness of the coacervates and the recruitment of desired molecules can be independently programmed by polymer design. Moreover, the polymeric coacervates can recruit and release intact liposomes, human EVs, and nanoalgosomes in high yields and separate vesicles from different types of impurities, including proteins and nucleic acids. This approach combines the speed and simplicity of precipitation methods and the programmability of chromatography with the gentleness of aqueous two-phase separation, thereby guaranteeing product stability. This material represents a promising alternative for providing a low-shear, gentle, and selective purification method for EVs.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, 90146, Italy
| | - Alessandro Molinelli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Ilaria Porello
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| |
Collapse
|
22
|
Polyethylenimine polyampholytes: Synthesis, characterization and dye adsorption study. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Pickett PD, Ma Y, Lueckheide M, Mao Y, Prabhu VM. Temperature dependent single-chain structure of poly[3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate] via small-angle neutron scattering. J Chem Phys 2022; 156:214904. [DOI: 10.1063/5.0093158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Responsive polyzwitterionic materials have become important for a range of applications such as environmental remediation and targeted drug delivery. Much is known about the macroscopic phase-behaviors of such materials, but how the smaller scale single-chain structures of polyzwitterions respond to external stimuli is not well understood, especially at temperatures close to their phase boundaries. Such chain conformation responses are important in directing larger-scale associative properties. Here, we study the temperature dependent single-chain structure of a model polysulfobetaine, poly[3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate], using small angle neutron scattering. In the absence of salt, we find that temperature has a large effect on solvent quality with a decreasing trend from good solvent conditions at 50 °C to poor solvent at 10 °C (a temperature just above the cloud point of 7.6 °C) and an estimated theta temperature of 39 °C. When 100 mM NaCl is present, the solvent quality is good with weak temperature dependence. Without salt present, the polymer chain appears to have a nearly Gaussian coil conformation and the backbone becomes slightly more rigid as the temperature is lowered to the cloud point as determined by the Debye-local rod model on a Kratky plot. The addition of salt has a notable effect on the intra-chain correlations where an increase in chain dimensions to a swollen coil conformation and an increase in chain rigidity is observed at 100 mM NaCl in D2O, however, with a negligible temperature dependence.
Collapse
Affiliation(s)
- Phillip D. Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Michael Lueckheide
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Yimin Mao
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
24
|
Ahmed ST, Leckband DE. Forces between mica and end-grafted statistical copolymers of sulfobetaine and oligoethylene glycol in aqueous electrolyte solutions. J Colloid Interface Sci 2022; 608:1857-1867. [PMID: 34752975 DOI: 10.1016/j.jcis.2021.09.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
This study quantified the interfacial forces associated with end-grafted, statistical (AB) co-polymers of sulfobetaine methacrylate (SBMA) and oligoethylene glycol methacrylate (OEGMA) (poly(SBMA-co-OEGMA)). Surface force apparatus measurements compared forces between mica and end-grafted copolymers containing 0, 40, or 80 mol% SBMA. Studies compared forces measured at low grafting density (weakly overlapping chains) and at high density (brushes). At high density, the range of repulsive forces did not change significantly with increasing SBMA content. By contrast, at low density, both the range and the amplitude of the repulsion increased with the percentage of SBMA in the chains. The ionic strength dependence of the film thickness and repulsive forces increased similarly with SBMA content, reflecting the increasing influence of charged monomers and their interactions with ions in solution. The forces could be described by models of simple polymers in good solvent. However, the forces and fitted model parameters change continuously with the SBMA content. The latter behavior suggests that ethyene glycol and sulfobetaine behave as non-interacting, miscible monomers that contribute independently to the interfacial forces. The results suggest that molecular scale properties of statistical poly (SBMA-co-OEGMA) films can be readily tuned by simple variation of the monomer ratios.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemistry, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly(sulfobetaine) films and mica. J Colloid Interface Sci 2022; 606:298-306. [PMID: 34392027 DOI: 10.1016/j.jcis.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
The molecular surface properties of zwitterionic polymer coatings are central to their ultra-low fouling properties and effectiveness as steric stabilizers in concentrated salt solutions. Here, Surface Force Apparatus measurements quantified the molecular forces between end-grafted poly(sulfobetaine) methacrylate thin films and mica, as a function of the chain grafting density and ionic strength. These results demonstrate that, at the ionic strengths considered, end-grafted poly(sulfobetaine) films can be described by models for polymers in good solvent. Parameters determined from data fits to the Milner-Witten-Cates or Dolan and Edwards models for dense or dilute chains, respectively, varied with ionic strength, in ways that reflect poly(sulfobetaine) swelling and the increased excluded volume strength of chain segments. These force measurements provide new insight into how polymer coverage and salt cooperate to regulate repulsive poly(sulfobetaine) steric barriers. These findings have implications for the design of grafted poly(sulfobetaine) as colloidal stabilizers or nonfouling surface coatings.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Jason J Madinya
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
26
|
Shimizu A, Hifumi E, Kojio K, Takahara A, Higaki Y. Modulation of Double Zwitterionic Block Copolymer Aggregates by Zwitterion-Specific Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14760-14766. [PMID: 34889092 DOI: 10.1021/acs.langmuir.1c02809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transformable double hydrophilic block copolymer assemblies are valid as a biocompatible smart macromolecular system. The molecular mechanisms in the spontaneous assembly of double zwitterionic diblock copolymers composed of a poly(carboxybetaine methacrylate) (PCB2) and a poly(sulfobetaine methacrylate) (PSB4) chains (PCB2-b-PSB4) were investigated by the modulation of the aggregates in response to nondetergent zwitterions. The PCB2-b-PSB4 diblock copolymers with a high degree of polymerization PSB4 block produced aggregates in salt-free water through "zwitterion-specific" interactions. The PCB2-b-PSB4 aggregates were dissociated by the addition of nondetergent sulfobetaine (SB4) and carboxybetaine (CB2) molecules, while the aggregates showed different aggregation modulation processes for SB4 and CB2. Zwitterions with different charged groups from SB4 and CB2, glycine and taurine, hardly disrupted the PCB2-b-PSB4 aggregates. The PCB2-b-PSB4 aggregate modulation efficiency of SBs associated with the intercharge hydrocarbon spacer length (CSL) rather than the symmetry with the SB in the PSB chain. These zwitterion-specific modulation behaviors were rationalized based on the nature of zwitterions including partial charge density, dipole moment, and hydrophobic interactions depending on the charged groups and CSL.
Collapse
Affiliation(s)
- Akane Shimizu
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Emi Hifumi
- Research Promotion Institute, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Ken Kojio
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute of Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Research Center for Negative Emission Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| |
Collapse
|
27
|
Niskanen J, Peltekoff AJ, Bullet JR, Lessard BH, Winnik FM. Enthalpy of the Complexation in Electrolyte Solutions of Polycations and Polyzwitterions of Different Structures and Topologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jukka Niskanen
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Alexander J. Peltekoff
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Richard Bullet
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît H. Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Françoise M. Winnik
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
- International Center for Materials Nanoarchitectonics (WPN-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
28
|
Miclotte MJ, Lawrenson SB, Varlas S, Rashid B, Chapman E, O’Reilly RK. Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl methacrylate)-Based Nanoparticles via a Postpolymerization Betainization Approach. ACS POLYMERS AU 2021; 1:47-58. [PMID: 34476421 PMCID: PMC8389998 DOI: 10.1021/acspolymersau.1c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/28/2022]
Abstract
The ability to tune the behavior of temperature-responsive polymers and self-assembled nanostructures has attracted significant interest in recent years, particularly in regard to their use in biotechnological applications. Herein, well-defined poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA)-based core-shell particles were prepared by RAFT-mediated emulsion polymerization, which displayed a lower-critical solution temperature (LCST) phase transition in aqueous media. The tertiary amine groups of PDEAEMA units were then utilized as functional handles to modify the core-forming block chemistry via a postpolymerization betainization approach for tuning both the cloud-point temperature (T CP) and flocculation temperature (T CFT) of these particles. In particular, four different sulfonate salts were explored aiming to investigate the effect of the carbon chain length and the presence of hydroxyl functionalities alongside the carbon spacer on the particle's thermoresponsiveness. In all cases, it was possible to regulate both T CP and T CFT of these nanoparticles upon varying the degree of betainization. Although T CP was found to be dependent on the type of betainization reagent utilized, it only significantly increased for particles betainized using sodium 3-chloro-2-hydroxy-1-propanesulfonate, while varying the aliphatic chain length of the sulfobetaine only provided limited temperature variation. In comparison, the onset of flocculation for betainized particles varied over a much broader temperature range when varying the degree of betainization with no real correlation identified between T CFT and the sulfobetaine structure. Moreover, experimental results were shown to partially correlate to computational oligomer hydrophobicity calculations. Overall, the innovative postpolymerization betainization approach utilizing various sulfonate salts reported herein provides a straightforward methodology for modifying the thermoresponsive behavior of soft polymeric particles with potential applications in drug delivery, sensing, and oil/lubricant viscosity modification.
Collapse
Affiliation(s)
- Matthieu
P. J. Miclotte
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stefan B. Lawrenson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
29
|
Kudaibergenov SE, Okay O. Behaviors of quenched polyampholytes in solution and gel state. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Laboratory of Engineering Profile Satbayev University Almaty Republic of Kazakhstan
- Department of Functional Polymers Institute of Polymer Materials and Technology Almaty Republic of Kazakhstan
| | - Oguz Okay
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
30
|
Bairagi U, Jacob J. Macroporous Polyzwitterionic Gels As Versatile Intermediates for the Fixation and Release of Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5424-5435. [PMID: 33891417 DOI: 10.1021/acs.langmuir.1c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new stable and functional polyzwitterion poly[1-(carboxymethyl)-4-methacrylamidopyridin-1-ium] was synthesized. The zwitterionic polymer shows its isoelectric point at a pH of 4.2, bidirectional pH responsiveness, and formation of dendritic fractal self-aggregated structures. Using this as a common intermediate, a simple, direct, and scalable single-step protocol was established to introduce various elementary anions like NO3-, HSO4-, H2PO4-, F-, Cl-, Br-, I-, CH3COO-, and HCOO- in their salt forms by reaction with the corresponding acids. FESEM studies on cross-linked polymeric hydrogels established the macroporous nature of these materials with their pore size in the range of 10-15 μm. Bidirectional swelling behavior was observed in these hydrogels from gel swelling kinetics and pH studies. Anion release studies in deionized water and buffer solutions showed ∼82 and ∼95% cumulative release for nitrate and phosphate anions, respectively, in 72 h. Our studies suggest that multifunctional polyzwitterionic gels are promising intermediates in the fixation and release of anions like nitrate and phosphate with potential applications in agriculture and healthcare.
Collapse
Affiliation(s)
- Ujjawal Bairagi
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Josemon Jacob
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
31
|
Dong H, Li J, Guo J, Lai F, Zhao F, Jiao Y, Brett DJL, Liu T, He G, Parkin IP. Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007548. [PMID: 33797810 DOI: 10.1002/adma.202007548] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/19/2020] [Indexed: 05/06/2023]
Abstract
Owing to the development of aqueous rechargeable zinc-ion batteries (ZIBs), flexible ZIBs are deemed as potential candidates to power wearable electronics. ZIBs with solid-state polymer electrolytes can not only maintain additional load-bearing properties, but exhibit enhanced electrochemical properties by preventing dendrite formation and inhibiting cathode dissolution. Substantial efforts have been applied to polymer electrolytes by developing solid polymer electrolytes, hydrogel polymer electrolytes, and hybrid polymer electrolytes; however, the research of polymer electrolytes for ZIBs is still immature. Herein, the recent progress in polymer electrolytes is summarized by category for flexible ZIBs, especially hydrogel electrolytes, including their synthesis and characterization. Aiming to provide an insight from lab research to commercialization, the relevant challenges, device configurations, and life cycle analysis are consolidated. As flexible batteries, the majority of polymer electrolytes exploited so far only emphasizes the electrochemical performance but the mechanical behavior and interactions with the electrode materials have hardly been considered. Hence, strategies of combining softness and strength and the integration with electrodes are discussed for flexible ZIBs. A ranking index, combining both electrochemical and mechanical properties, is introduced. Future research directions are also covered to guide research toward the commercialization of flexible ZIBs.
Collapse
Affiliation(s)
- Haobo Dong
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon, London, WC1H 0AJ, UK
| | - Jianwei Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon, London, WC1H 0AJ, UK
| | - Jian Guo
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon, London, WC1H 0AJ, UK
| | - Feili Lai
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Fangjia Zhao
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon, London, WC1H 0AJ, UK
| | - Yiding Jiao
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon, London, WC1H 0AJ, UK
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, London, OX11 ORA, UK
| | - Tianxi Liu
- School of Chemical and Material Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon, London, WC1H 0AJ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Ivan P Parkin
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon, London, WC1H 0AJ, UK
| |
Collapse
|
32
|
Zhang C, Zhou J, Ye X, Li Z, Wang Y. Zwitterionization of Tertiary Amines in Nanoporous Block Copolymers: toward Fouling-Resistant Ultrafiltration Membranes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chenxu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Zhuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| |
Collapse
|
33
|
Zhao J, Pan Z, Snyder D, Stone HA, Emrick T. Chemically Triggered Coalescence and Reactivity of Droplet Fibers. J Am Chem Soc 2021; 143:5558-5564. [PMID: 33793226 PMCID: PMC8631051 DOI: 10.1021/jacs.1c02576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the role of functional polymer surfactants in the construction and triggered collapse of droplet-based fibers and the use of these macroscopic supracolloidal structures for reagent compartmentalization. Copolymer surfactants containing both zwitterionic and tertiary amine pendent groups were synthesized for stabilization of oil-in-water droplets, in which the self-adherent properties of the selected zwitterions impart interdroplet adherence, while the amine groups provide access to pH-triggered coalescence. Macroscopic fibers, obtained by droplet extrusion, were prepared with reagents embedded in spatially distinct components of the fibers. Upon acidification of the continuous aqueous phase, protonation of the polymer surfactants increases their hydrophilicity and causes rapid fiber disruption and collapse. Cross-linked versions of these supracolloidal fibers were stable upon acidification and appeared to direct interdroplet passage of encapsulants along the fiber length. Overall, these functional, responsive emulsions provide a strategy to impart on-demand chemical reactivity to soft materials structures that benefits from the interfacial chemistry of the system.
Collapse
Affiliation(s)
- Jing Zhao
- Polymer Science & Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zehao Pan
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Deborah Snyder
- Polymer Science & Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021; 22:1494-1508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jana F Karthäuser
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Onur Özcan
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Dirk Schanzenbach
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - André Laschewsky
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Li Y, Chen X, Geng H, Dong Y, Wang B, Ma Z, Pan L, Ma G, Song D, Li Y. Oxidation Control of Bottlebrush Molecular Conformation for Producing Libraries of Photonic Structures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Lian Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xi Chen
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Yun Dong
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Bin Wang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Zhe Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Li Pan
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Gui‐Qiu Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yue‐Sheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
36
|
Li Y, Chen X, Geng H, Dong Y, Wang B, Ma Z, Pan L, Ma G, Song D, Li Y. Oxidation Control of Bottlebrush Molecular Conformation for Producing Libraries of Photonic Structures. Angew Chem Int Ed Engl 2020; 60:3647-3653. [DOI: 10.1002/anie.202011702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Yu‐Lian Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xi Chen
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Yun Dong
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Bin Wang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Zhe Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Li Pan
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Gui‐Qiu Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yue‐Sheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
37
|
Jing B, Ferreira M, Lin K, Li R, Yavitt BM, Qiu J, Fukuto M, Zhu Y. Ultrastructure of Critical-Gel-like Polyzwitterion–Polyoxometalate Complex Coacervates: Effects of Temperature, Salt Concentration, and Shear. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Manuela Ferreira
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehua Lin
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M. Yavitt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jie Qiu
- School of Nuclear Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
38
|
Lteif S, Abou Shaheen S, Schlenoff JB. The Thiouronium Group for Ultrastrong Pairing Interactions between Polyelectrolytes. J Phys Chem B 2020; 124:10832-10840. [PMID: 33174752 DOI: 10.1021/acs.jpcb.0c07456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various charged groups may be used as a repeat unit in polyelectrolytes to provide physical interactions between oppositely charged polymers leading to phase separation. The materials formed thus are termed polyelectrolyte complexes or coacervates (PECs). The strength of pairing between positive, Pol+, and negative, Pol-, repeat units depends on the specific identity of the monomer repeat unit. In this work, the pairing strength of the thiouronium group, a cation closely related to guanidinium, is evaluated using a polythiouronium polyelectrolyte. Polymers containing guanidinium, notably polyarginine, a peptide, are known for their unusual behavior, such as the formation of like-charge ion pairs and hydrogen bonding. It is shown here that some of this behavior is carried over to polythiouroniums, which results in exceptionally strong interactions with polyanions such as polysulfonates and polycarboxylates. The resilience of the polythiouronium/Pol- interaction was evaluated using the buildup of polyelectrolyte multilayers at various salt concentrations and by breaking up preformed PECs with high concentrations of added salt. The thiouronium group even interacts strongly enough with polymeric zwitterions to enable complexation with this nominally weakly interacting, net-neutral polymer.
Collapse
Affiliation(s)
- Sandrine Lteif
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
39
|
Jumai’an E, Garcia E, Herrera-Alonso M, Bevan MA. Specific Ion Effects on Adsorbed Zwitterionic Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugenie Jumai’an
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elena Garcia
- Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Margarita Herrera-Alonso
- Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael A. Bevan
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Bitter S, Schlötter M, Schilling M, Krumova M, Polarz S, Winter RF. Ferro-self-assembly: magnetic and electrochemical adaptation of a multiresponsive zwitterionic metalloamphiphile showing a shape-hysteresis effect. Chem Sci 2020; 12:270-281. [PMID: 34163595 PMCID: PMC8178951 DOI: 10.1039/d0sc05249c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metallosurfactants are molecular compounds which combine the unique features of amphiphiles, like their capability of self-organization, with the peculiar properties of metal complexes like magnetism and a rich redox chemistry. Considering the high relevance of surfactants in industry and science, amphiphiles that change their properties on applying an external trigger are highly desirable. A special feature of the surfactant reported here, 1-(Z)-heptenyl-1′-dimethylammonium-methyl-(3-sulfopropyl)ferrocene (6), is that the redox-active ferrocene constituent is in a gemini-position. Oxidation to 6+ induces a drastic change of the surfactant's properties accompanied by the emergence of paramagnetism. The effects of an external magnetic field on vesicles formed by 6+ and the associated dynamics were monitored in situ using a custom-made optical birefringence and dual dynamic light scattering setup. This allowed us to observe the optical anisotropy as well as the anisotropy of the diffusion coefficient and revealed the field-induced formation of oriented string-of-pearls-like aggregates and their delayed disappearance after the field is switched off. The self-organization properties of a stimuli responsive amphiphile can be altered by subjecting the paramagnetic oxidized form to a magnetic field of 0.8 T and monitored in real time by coupling optical birefringence with dynamic light scattering.![]()
Collapse
Affiliation(s)
- Stefan Bitter
- Department of Chemistry, University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Moritz Schlötter
- Department of Chemistry, University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Markus Schilling
- Department of Chemistry, University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Marina Krumova
- Department of Chemistry, University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Sebastian Polarz
- Department of Chemistry, University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany .,Institute of Inorganic Chemistry, Leibniz-University Hannover Callinstrasse 9 30167 Hannover Germany
| | - Rainer F Winter
- Department of Chemistry, University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
41
|
Higaki Y, Kobayashi M, Takahara A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9015-9024. [PMID: 32677837 DOI: 10.1021/acs.langmuir.0c01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyzwitterions have emerged as a new class of antifouling materials alternating poly(ethylene glycol). The exemplary biopassivation and lubrication behaviors are often attributed to the particular chemical structure of zwitterions, which involve a large dipole moment of the charged groups and a neutral net charge, while the hydration state and dynamics also associate with these characteristics. Polymer brushes composed of surface-tethered polyzwitterion chains produced by surface-initiated controlled radical polymerization have been developed as thin films which exhibit excellent antifouling and lubrication properties. In past decades, numerous studies have been devoted to examining the structure and dynamics of polyzwitterion brush chains in aqueous solutions. This feature article provides an overview of recent studies exploring the hydration state of polyzwitterion brushes with specular neutron reflectivity, highlights some newly published work on the nonuniform equilibrium structure, ion concentration dependence, ion specificity, and the effects of charge spacer length in the zwitterions, and discusses future perspective in this field.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | | |
Collapse
|
42
|
Dong P, Feng J, Zhang D, Li C, Shi QS, Xie X. In situ synthesis of amply antimicrobial silver nanoparticle (AgNP) by polyzwitterionic copolymers bearing hydroxyl groups. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Erfani A, Flynn NH, Aichele CP, Ramsey JD. Encapsulation and delivery of protein from within poly(sulfobetaine) hydrogel beads. J Appl Polym Sci 2020. [DOI: 10.1002/app.49550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amir Erfani
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| | - Nicholas H. Flynn
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| | - Clint P. Aichele
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| | - Joshua D. Ramsey
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| |
Collapse
|
44
|
Li M, Zhuang B, Yu J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem Asian J 2020; 15:2060-2075. [DOI: 10.1002/asia.202000547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Minglun Li
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Bilin Zhuang
- Division of ScienceYale-NUS College Singapore 138527 Singapore
| | - Jing Yu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
45
|
Erfani A, Seaberg J, Aichele CP, Ramsey JD. Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules 2020; 21:2557-2573. [DOI: 10.1021/acs.biomac.0c00497] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joshua Seaberg
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Clint Philip Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
46
|
Li Z, Hao B, Tang Y, Li H, Lee TC, Feng A, Zhang L, Thang SH. Effect of end-groups on sulfobetaine homopolymers with the tunable upper critical solution temperature (UCST). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Katayama R, Tanaka N, Takagi Y, Shiraishi K, Tanaka Y, Matsumoto A, Kojima C. Characterization of the Hydration Process of Phospholipid-Mimetic Polymers Using Air-Injection-Mediated Liquid Exclusion Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5626-5632. [PMID: 32308005 DOI: 10.1021/acs.langmuir.0c00953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers including hydrophobic units such as poly(MPC-co-butyl methacrylate) (PMB) and poly(MPC-co-dodecyl methacrylate) (PMD) are used as coating agents for medical devices because of their antifouling effects. In this study, the whole hydration process of MPC polymer-coated surfaces was investigated using air-injection-mediated liquid exclusion (AILE) methods in which the liquid exclusion diameter during air injection was correlated to the water-repelling property. The prejetted and standard AILE methods showed the initial change from a dry to a wet state and the swelling behaviors of the MPC polymers, respectively. The liquid exclusion diameter of the MPC polymer-coated surfaces increased with an increase in the immersion time in various aqueous solutions such as deionized water, phosphate-buffered saline (PBS), and cell culture media. Moreover, the liquid exclusion diameter of the PMD-coated surface was larger than that of the PMB-coated one. Ellipsometry directly indicated the polymer layers swollen in water. Scanning probe microscopy (SPM) revealed that nanosized protuberances were formed in water, especially at the PMD-coated surface. The different swelling behaviors of these MPC polymer-coated surfaces affected the liquid exclusion diameters. Thus, the AILE methods are a powerful tool to elucidate the hydration process in various liquid media.
Collapse
Affiliation(s)
- Risa Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Takagi
- Graduate School of Systems Engineering, Kindai University, 1 Takaya-umenobe, Higashihiroshima, Hiroshima 739-2116, Japan
| | - Kohei Shiraishi
- Graduate School of Systems Engineering, Kindai University, 1 Takaya-umenobe, Higashihiroshima, Hiroshima 739-2116, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
48
|
Lim J, Matsuoka H, Saruwatari Y. Effects of Halide Anions on the Solution Behavior of Double Hydrophilic Carboxy-Sulfobetaine Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5165-5175. [PMID: 32308007 DOI: 10.1021/acs.langmuir.0c00325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The solution behavior of the double polybetaine block copolymer poly(2-((2-(methacryloyloxy)ethyl)dimethylammonio)acetate)-block-poly(3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (PGLBT-b-PSPE) in sodium halide aqueous solutions was investigated. In the presence of salt ions, the unimer-to-micelle transition of PGLBT-b-PSPE that originated by Coulombic attraction between PSPE motifs was suppressed and shifted to much lower temperatures. The transition was hindered more by increases in the salt concentration because of additional counterion binding on the ionized site of PGLBT-b-PSPE chains, which screens the dipole-dipole attractions. The specific ion effect was investigated on four different halides, Cl-, Br-, I-, and F-. Cl- and two chaotropes (Br- and I-) apparently prevented micelle formation, and the hindering effectiveness on the PSPE pairing followed the general Hofmeister series of anions: I- > Br- > Cl-. More chaotropic anions strongly maintained the polymer chains in a fully hydrated state when the same amount of salts was incorporated. However, F-, which is classified as a kosmotrope, only made a small contribution to lowering the transition point and led to abrupt transition without showing a gradual phase change prior to the transition. The variations of hydrodynamic radius and zeta potentials of unimers and micelles gave hints of the solvation state of salt-incorporated PGLBT-b-PSPEs in each state. These results suggest that chaotropic halides tend to exist in the vicinity of the diblock polybetaine chain surface and thus prominently influenced the thermoresponsive solution behavior, whereas kosmotropic F- prefers water molecules and causes minor changes in the PGLBT-b-PSPE aqueous solution.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd., 7-20 Azuchi-machi, 1chome, Chuo-ku, Osaka 541-0052, Japan
| |
Collapse
|
49
|
Yuan H, Liu G. Ionic effects on synthetic polymers: from solutions to brushes and gels. SOFT MATTER 2020; 16:4087-4104. [PMID: 32292998 DOI: 10.1039/d0sm00199f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ionic effects on synthetic polymers have attracted extensive attention due to the crucial role of ions in the determination of the properties of synthetic polymers. This review places the focus on specific ion effects, multivalent ion effects, and ionic hydrophilicity/hydrophobicity effects in synthetic polymer systems from solutions to brushes and gels. The specific ion effects on neutral polymers are determined by both the direct and indirect specific ion-polymer interactions, whereas the ion specificities of charged polymers are mainly dominated by the specific ion-pairing interactions. The ionic cross-linking effect exerted by the multivalent ions is widely used to tune the properties of polyelectrolytes, while the reentrant behavior of polyelectrolytes in the presence of multivalent ions still remains poorly understood. The ionic hydrophilicity/hydrophobicity effects not only can be applied to make strong polyelectrolytes thermosensitive, but also can be used to prepare polymeric nano-objects and to control the wettability of polyelectrolyte brush-modified surfaces. The not well-studied ionic hydrogen bond effects are also discussed in the last section of this review.
Collapse
Affiliation(s)
- Haiyang Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026, P. R. China.
| | | |
Collapse
|
50
|
Li C, Liu C, Li M, Xu X, Li S, Qi W, Su R, Yu J. Structures and Antifouling Properties of Self-Assembled Zwitterionic Peptide Monolayers: Effects of Peptide Charge Distributions and Divalent Cations. Biomacromolecules 2020; 21:2087-2095. [DOI: 10.1021/acs.biomac.0c00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Minglun Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|