1
|
Verjans J, André A, Sedlačík T, Aksakal R, van Ruymbeke E, Hoogenboom R. Physically crosslinked polyacrylates by quadruple hydrogen bonding side chains. J Mater Chem B 2024. [PMID: 39484839 DOI: 10.1039/d4tb01702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Dynamic polymer materials can be obtained by introducing supramolecular interactions between the polymer chains. Here we report on the preparation and mechanical properties of poly(methyl acrylate) (PMA) and poly(n-butyl acrylate) (PBA) funcionalized with ureidopyrimidinone (UPy) in the side chains. In contrast to the traditional UPy with a methyl group, the selected UPy motif contained a branched alkyl side chain, which enhances solubility, compatibility with the polymer matrix and potentially prevents stacking of UPy dimers. Low molar mass PMA and PBA were synthesized via Cu(0)-mediated radical polymerization and allyl bonds were introduced with different degrees of functionalization by stoichiometrically controlled transesterification with allyl alcohol. The allyl esters served as functional handles for UPy attachment via UV-initiated radical thiol-ene coupling. The PMA-UPy materials displayed a more glassy appearance, in contrast to the rubbery PBA-UPy polymer networks, associated to its higher glass transition temperature. The mechanical properties of the resulting hydrogen bonded polymer networks were assessed by thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis and tensile testing, followed by rheological analysis of the network dynamics. Furthermore, the effect of associative groups on the linear viscoelastic response is discussed based on a modified sticky Rouse model indicating the absence of significant aggregation or phase separation of the UPY units.
Collapse
Affiliation(s)
- Jente Verjans
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Alexis André
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
- Soft Matter, Rheology and Technology (SMaRT), Department of Chemical Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - Tomáš Sedlačík
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Resat Aksakal
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Evelyne van Ruymbeke
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Zhang P, Shen B, Pu H. Robust, dimensional stable, and self-healable anion exchange membranes via quadruple hydrogen bonds. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Xu J, Wang X, Ruan H, Zhang X, Zhang Y, Yang Z, Wang Q, Wang T. Recent Advances in High-strength and High-toughness Polyurethanes Based on Supramolecular Interactions. Polym Chem 2022. [DOI: 10.1039/d2py00269h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments in supramolecular chemistry have generated increasing interest in supramolecular polymers and opened a window for the exploitation of various supramolecular polymeric materials and their multifunctional composites. High-performance polyurethanes,...
Collapse
|
4
|
Wu S, Chen Q. Advances and New Opportunities in the Rheology of Physically and Chemically Reversible Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
5
|
Yang H, Wu S, Chen Q. How to Choose a Secondary Interaction to Improve Stretchability of Associative Polymers? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huanhuan Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
6
|
Liu S, Cao X, Huang C, Weiss RA, Zhang Z, Chen Q. Brittle-to-Ductile Transition of Sulfonated Polystyrene Ionomers. ACS Macro Lett 2021; 10:503-509. [PMID: 35549231 DOI: 10.1021/acsmacrolett.1c00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study examines the brittle-to-ductile transition of sulfonated polystyrene ionomers (SPS) with different counterions. The polystyrene precursor was unentangled and had two ionic groups per chain on average. Thus, its terminal relaxation time was comparable to the lifetime of the associating ionic groups. Three types of ionomer samples were used to tune the association lifetime: (1) fully neutralized SPS with different alkali-metal counterions, (2) fully neutralized SPS with mixed sodium and cesium counterions, and (3) partially neutralized SPS with sodium or cesium counterions. For all three systems, the brittle-to-ductile transition could be represented by a diagram of two Weissenberg numbers, Wi and WiR, defined with respect to the terminal and Rouse relaxation times, respectively. A flowable region existed at sufficiently low Wi, independent of WiR. At higher Wi, a brittle-to-ductile transition of the ionomer melt occurred above a critical value of WiR. To achieve ductility during the application of rapid elongational flow, the Rouse-type motions should be sufficiently slow relative to the rate of ion-dissociation, so that the strain-induced breakup of the ionic cross-links would not cause very strong chain retraction that may further lead to the macroscopic fracture.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Xiao Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Chongwen Huang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - R. A. Weiss
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zhijie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
7
|
Golkaram M, Loos K. A Critical Approach to Polymer Dynamics in Supramolecular Polymers. Macromolecules 2019; 52:9427-9444. [PMID: 31894159 PMCID: PMC6933822 DOI: 10.1021/acs.macromol.9b02085] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/01/2019] [Indexed: 12/15/2022]
Abstract
Over the past few years, the concurrent (1) development of polymer synthesis and (2) introduction of new mathematical models for polymer dynamics have evolved the classical framework for polymer dynamics once established by Doi-Edwards/de Gennes. Although the analysis of supramolecular polymer dynamics based on linear rheology has improved a lot recently, there are a large number of insecurities behind the conclusions, which originate from the complexity of these novel systems. The interdependent effect of supramolecular entities (stickers) and chain dynamics can be overwhelming depending on the type and location of stickers as well as the architecture and chemistry of polymers. This Perspective illustrates these parameters and strives to determine what is still missing and has to be improved in the future works.
Collapse
Affiliation(s)
- Milad Golkaram
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
8
|
Costanzo S, Scherz L, Floudas G, Pasquino R, Kröger M, Schlüter AD, Vlassopoulos D. Hybrid Dendronized Polymers as Molecular Objects: Viscoelastic Properties in the Melt. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Salvatore Costanzo
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, Heraklion 70013, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 71003, Crete, Greece
- DICMAPI, University of Naples, P.le Tecchio 80, Naples 80125, Italy
| | - Leon Scherz
- Polymer Chemistry and Polymer Physics, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Rossana Pasquino
- DICMAPI, University of Naples, P.le Tecchio 80, Naples 80125, Italy
| | - Martin Kröger
- Polymer Chemistry and Polymer Physics, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - A. Dieter Schlüter
- Polymer Chemistry and Polymer Physics, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, Heraklion 70013, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 71003, Crete, Greece
| |
Collapse
|
9
|
|
10
|
Dutertre F, Bang KT, Vereroudakis E, Loppinet B, Yang S, Kang SY, Fytas G, Choi TL. Conformation of Tunable Nanocylinders: Up to Sixth-Generation Dendronized Polymers via Graft-Through Approach by ROMP. Macromolecules 2019; 52:3342-3350. [PMID: 31496546 PMCID: PMC6727591 DOI: 10.1021/acs.macromol.9b00457] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Indexed: 01/06/2023]
Abstract
Well-defined dendronized polymers (denpols) bearing high-generation dendron are attractive nano-objects as high persistency provides distinct properties, contrast to the random coiled linear polymers However, their syntheses via graft-through approach have been very challenging due to their structural complexity and steric hindrance retarding polymerization. Here, we report the first example of the synthesis of poly(norbornene) (PNB) containing ester dendrons up to the sixth generation (G6) by ring-opening metathesis polymerization. This is the highest generation ever polymerized among dendronized polymers prepared by graft-through approach, producing denpols with molecular weight up to 1960 kg/mol. Combination of size-exclusion chromatography, light scattering, and neutron scattering allowed a thorough structural study of these large denpols in dilute solution. A semiflexible cylinder model was successfully applied to represent both the static and dynamic experimental quantities yielding persistent length (l p), cross-sectional radius (R cs), and contour length (L). The denpol persistency seemed to increase with generation, with l p reaching 27 nm (Kuhn length 54 nm) for PNB-G6, demonstrating a rod-like conformation. Poly(endo-tricycle[4.2.2.0]deca-3,9-diene) (PTD) denpols exhibited larger persistency than the PNB analogues of the same generation presumably due to the higher grafting density of the PTD denpols. As the dendritic side chains introduce shape anisotropy into the denpol backbone, future work will entail a study of these systems in the concentrated solutions and melts.
Collapse
Affiliation(s)
- Fabien Dutertre
- Institute
of Electronic Structure and Laser, FO.R.T.H, PO Box 1527, 71110 Heraklion, Greece
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Ki-Taek Bang
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Emmanouil Vereroudakis
- Institute
of Electronic Structure and Laser, FO.R.T.H, PO Box 1527, 71110 Heraklion, Greece
- Department
of Materials Science & Technology, University
of Crete, 71003 Heraklion, Crete, Greece
| | - Benoit Loppinet
- Institute
of Electronic Structure and Laser, FO.R.T.H, PO Box 1527, 71110 Heraklion, Greece
| | - Sanghee Yang
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Yun Kang
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - George Fytas
- Institute
of Electronic Structure and Laser, FO.R.T.H, PO Box 1527, 71110 Heraklion, Greece
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tae-Lim Choi
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Qian Z, Koh YP, Pallaka MR, Chang AB, Lin TP, Guzmán PE, Grubbs RH, Simon SL, McKenna GB. Linear Rheology of a Series of Second-Generation Dendronized Wedge Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02122] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhiyuan Qian
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yung P. Koh
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Madhusudhan R. Pallaka
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Alice B. Chang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tzu-Pin Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Pablo E. Guzmán
- Energetic Technology Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Robert H. Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sindee L. Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
12
|
Abstract
During laboratory practice, it is often necessary to perform rheological measurements with small specimens, mainly due to the limited availability of the investigated systems. Such a restriction occurs, for example, because the laboratory synthesis of new materials is performed on small scales, or can concern biological samples that are notoriously difficult to be extracted from living organisms. A complete rheological characterization of a viscoelastic material involves both linear and nonlinear measurements. The latter are more challenging and generally require more mass, as flow instabilities often cause material losses during the experiments. In such situations, it is crucial to perform rheological tests carefully in order to avoid experimental artifacts caused by the use of small geometries. In this paper, we indicate the drawbacks of performing linear and nonlinear rheological measurements with very small amounts of samples, and by using a well-characterized linear polystyrene, we attempt to address the challenge of obtaining reliable measurements with sample masses of the order of a milligram, in both linear and nonlinear regimes. We demonstrate that, when suitable protocols and careful running conditions are chosen, linear viscoelastic mastercurves can be obtained with good accuracy and reproducibility, working with plates as small as 3 mm in diameter and sample thickness of less than 0.2 mm. This is equivalent to polymer masses of less than 2 mg. We show also that the nonlinear start-up shear fingerprint of polymer melts can be reliably obtained with samples as small as 10 mg.
Collapse
|
13
|
Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E. Physically cross-linked polyethylene via reactive extrusion. Polym Chem 2019. [DOI: 10.1039/c9py00168a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ureidopyrimidinone (UPy) is introduced into various polyethylenes (PEs) bearing hydroxyl groups by solution grafting, affording physically cross-linked PE via multiple H-bonding.
Collapse
Affiliation(s)
- Arkadiusz Zych
- SABIC Technology & Innovation
- STC Geleen
- Urmonderbaan 22
- Geleen
- The Netherlands
| | - Alice Verdelli
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Maria Soliman
- SABIC Technology & Innovation
- STC Geleen
- Urmonderbaan 22
- Geleen
- The Netherlands
| | - Roberta Pinalli
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Jérôme Vachon
- SABIC Technology & Innovation
- STC Geleen
- Urmonderbaan 22
- Geleen
- The Netherlands
| | - Enrico Dalcanale
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| |
Collapse
|
14
|
Wu S, Cao X, Zhang Z, Chen Q, Matsumiya Y, Watanabe H. Molecular Design of Highly Stretchable Ionomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00617] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022, China
| | - Zhijie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022, China
| | - Yumi Matsumiya
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Hiroshi Watanabe
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
15
|
Metri V, Louhichi A, Yan J, Baeza GP, Matyjaszewski K, Vlassopoulos D, Briels WJ. Physical Networks from Multifunctional Telechelic Star Polymers: A Rheological Study by Experiments and Simulations. Macromolecules 2018; 51:2872-2886. [PMID: 29910512 PMCID: PMC5997402 DOI: 10.1021/acs.macromol.7b02613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/26/2018] [Indexed: 11/29/2022]
Abstract
The equilibrium mechanical properties of a cross-linked gel of telechelic star polymers are studied by rheology and Brownian dynamics simulations. The Brownian dynamics model consists of cores to which Rouse arms are attached. Forces between the cores are obtained from a potential of mean force model developed by Likos and co-workers. Both experimentally and in the simulations, networks were created by attaching sticker groups to the ends of the arms of the polymers, which were next allowed to form bonds among them in a one to one fashion. Simulations were sped up by solving the Rouse dynamics exactly. Moreover, the Rouse model was extended to allow for different frictions on different beads. In order to describe the rheology of the non-cross-linked polymers, it had to be assumed that bead frictions increase with increasing bead number along the arms. This friction model could be transferred to describe the rheology of the network without any adjustments other than an overall increase of the frictions due to the formation of bonds. The slowing down at intermediate times of the network rheology compared to that of the non-cross-linked polymers is well described by the model. The percentage of stickers involved in forming inter-star bonds in the system was determined to be 25%, both from simulations and from an application of the Green-Tobolsky relation to the experimental plateau value of the shear relaxation modulus. Simulations with increasing cross-link percentages revealed that on approaching the gel transition the shear relaxation modulus develops an algebraic tail, which gets frozen at a percentage of maximum cross-linking of about 11%.
Collapse
Affiliation(s)
- Vishal Metri
- Computational Chemical Physics, Faculty of Science
and Technology, and MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Ameur Louhichi
- Institute
of Electronic Structure & Laser, FORTH, P.O. Box 1527, 70013 Heraklion, Crete Greece
- Department
of Materials Science & Technology, University
of Crete, Voutes Campus, 70013 Heraklion, Crete Greece
| | - Jiajun Yan
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Guilhem P. Baeza
- CNRS,
MATEIS, University of Lyon, INSA-Lyon, UMR5510-7 avenue Jean Capelle, F-69621 Villeurbanne, France
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Dimitris Vlassopoulos
- Institute
of Electronic Structure & Laser, FORTH, P.O. Box 1527, 70013 Heraklion, Crete Greece
- Department
of Materials Science & Technology, University
of Crete, Voutes Campus, 70013 Heraklion, Crete Greece
| | - Wim J. Briels
- Computational Chemical Physics, Faculty of Science
and Technology, and MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- ICS 3, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|