1
|
Mittal N, Soni RK, Teotia M. Innovative approaches to chemical recycling of polyethylene terephthalate waste: Investigating key components and their emerging applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123595. [PMID: 39672048 DOI: 10.1016/j.jenvman.2024.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Polyethylene Terephthalate, a widely recognized thermoplastic, is used in numerous sectors including packaging, textiles, electronics, construction, and medical due to its lightweight, cost-efficiency, transparency, flexibility, quick drying, durability and excellent gas/moisture barrier properties. However, its non-biodegradable nature poses significant environmental concerns, necessitating effective recycling and reuse methods. Over the past decades, scientists have focused on both mechanical and chemical recycling methods for PET waste to produce new molecules with potential applications. This review provides a comprehensive account of utilizing PET waste as a feedstock for synthesizing new molecules through various recycling techniques. An up-to-date and comparative overview of different chemical recycling techniques, including ammonolysis, aminolysis, glycolysis, alcoholysis, and hydrolysis in terms of reactants, reaction conditions, products, and yields are outlined. Applications of depolymerized end products like terephthalamide, NN'-bisallyl-terephthalamide, terephthalic dihydrazide, NN'-diphenyl-terephthalamide, dimethyl-terephthalate, dimethyl terephthalate, bis-hydroxyethyl-terephthalate (BHET), bis-hydroxy ethylene terephthalamide (BHETA), terephthalic acid etc. are succinctly presented. These products found potential industrial applications including thermostabilizers, surfactants, hardeners, peptisers, photoinitiators, crosslinkers, plasticizers, adsorbents, sealants, catalysts, etc. Additionally, the conversion of these depolymerized end products into other useful compounds like terephthalonitrile, para-xylylenediamine, 1,4-bis(aminomethyl)cyclohexane, lanthanum complexes, acrylates, BHET and BHETA derivatives, oxadiazole derivatives, 2,2'-(1,4-phenylene)-bis(2-oxazoline), 1,4-cyclohexanedimethanol, dyes, dioctyl terephthalate, butylene-adipate-co-terephthalate, terephthaloyl dichloride etc. has also been detailed along with their potential applications.
Collapse
Affiliation(s)
- Neha Mittal
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Rakesh Kumar Soni
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, India.
| | - Meenu Teotia
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, India
| |
Collapse
|
2
|
Wang L, Tu Z, Liang J, Wang Y, Wei Z. Development of poly(butylene oxalate-co-furanoate) copolymers with enhanced sustainability and hydrolytic degradability. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135997. [PMID: 39366038 DOI: 10.1016/j.jhazmat.2024.135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Polyoxalate, a novel intrinsically hydrolysable polyester, garners significant interest for its high cost-effectiveness and versatility. However, concerns persist regarding its durability in practical applications. This study integrates bio-based poly(butylene furanoate) (PBF), which possesses remarkable barrier performance, into the poly(butylene oxalate) (PBOx) framework to synthesize poly(butylene oxalate‑co‑furanoate) (PBOF) with tunable degradation rates. The influence of incorporating BF units on thermal, crystalline, mechanical, and barrier properties was systematically analyzed. Results demonstrated the addition of BF units dramatically improved the balance between degradation and physical properties. Laboratory degradation experiments indicated that PBOF possessed significant degradation effects. Among them, PBOF-41 (with 41 % molar furanoate) decreased in weight by 20 % in freshwater, 70 % in an enzyme solution, and 8 % in artificial seawater within 30 days. After 28 days of degradation in soil, the residual weight was reduced to 80 % of its initial weight. Theoretical calculations and experiments have clarified the enhancement of the Gibbs free energy and energy barrier of the hydrolysis reaction by the BF unit. In summary, PBOF copolyesters have excellent gas barrier performance, adjustable thermal properties, well-balanced mechanical properties, and degradability, making them highly promising for sustainable plastic products.
Collapse
Affiliation(s)
- Lizheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Sinopec Dalian Petrochemical Research Institute Co. Ltd., Dalian 113001, China
| | - Jiaming Liang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanyu Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Yuan J, Zhang X, Xu J, Ding J, Li W, Guo B. Effect of Glycerol Stearates on the Thermal and Barrier Properties of Biodegradable Poly(butylene Adipate-Co-Terephthalate). MATERIALS (BASEL, SWITZERLAND) 2024; 17:5732. [PMID: 39685168 DOI: 10.3390/ma17235732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Two types of glycerol stearates, glycerol monostearate (GMS) and glycerol tristearate (GTS), were added into poly(butylene adipate-co-terephtalate) (PBAT), with the aim to improve their water vapor barrier properties. The effects of the two small molecules on microstructure, chain mobility, and surface hydrophobicity were amply assessed via both experimental and simulation methods. The incorporation of the modifiers at small loadings, 5 wt% of GMS and 1 wt% of GTS, resulted in substantial improvements in water vapor barrier properties, while a further increase in the modifier content resulted in deterioration. The optimal water vapor permeability reached values of 2.63 × 10-13 g·cm/(cm2·s·Pa) and 6.55 × 10-13 g·cm/(cm2·s·Pa), which are substantially lower than the permeability, 8.43 × 10-13 g·cm/(cm2·s·Pa), of neat PBAT. The water vapor permeability of PBAT/GMS blends was also proven to be time-dependent and dramatically decreased with time, mainly due to the migration process of small molecules, forming a waterproof layer. The barrier improvement results are assumed to be related to the hydrophobic effect of glycerol stearate and are largely dependent on the content, polarity, compatibility, and dispersion of modifiers. In addition, the incorporation of modifiers did not largely sacrifice the mechanical strength of PBAT, which is advantageous in mulch film applications.
Collapse
Affiliation(s)
- Jing Yuan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinpeng Zhang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Xu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianping Ding
- Xinjiang Blue Ridge Tunhe Sci. & Tech. Co., Ltd., Changji 831100, China
| | - Wanli Li
- Xinjiang Blue Ridge Tunhe Sci. & Tech. Co., Ltd., Changji 831100, China
| | - Baohua Guo
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Di Lorenzo ML. Crystallization of Poly(ethylene terephthalate): A Review. Polymers (Basel) 2024; 16:1975. [PMID: 39065291 PMCID: PMC11280767 DOI: 10.3390/polym16141975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(ethylene terephthalate) (PET) is a thermoplastic polyester with excellent thermal and mechanical properties, widely used in a variety of industrial fields. It is a semicrystalline polymer, and most of the industrial success of PET derives from its easily tunable crystallization kinetics, which allow users to produce the polymer with a high crystal fraction for applications that demand high thermomechanical resistance and barrier properties, or a fully amorphous polymer when high transparency of the product is needed. The main properties of the polymer are presented and discussed in this contribution, together with the literature data on the crystal structure and morphology of PET. This is followed by an in-depth analysis of its crystallization kinetics, including both primary crystal nucleation and crystal growth, as well as secondary crystallization. The effect of molar mass, catalyst residues, chain composition, and thermo-mechanical treatments on the crystallization kinetics, structure, and morphology of PET are also reviewed in this contribution.
Collapse
Affiliation(s)
- Maria Laura Di Lorenzo
- National Research Council, Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
5
|
Zhang R, Zheng X, Cheng X, Xu J, Li Y, Zhou Q, Xin J, Yan D, Lu X. Degradation of Poly(ethylene terephthalate) Catalyzed by Nonmetallic Dibasic Ionic Liquids under UV Radiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1583. [PMID: 38612097 PMCID: PMC11012343 DOI: 10.3390/ma17071583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Nonmetallic ionic liquids (ILs) exhibit unique advantages in catalyzing poly (ethylene terephthalate) (PET) glycolysis, but usually require longer reaction times. We found that exposure to UV radiation can accelerate the glycolysis reaction and significantly reduce the reaction time. In this work, we synthesized five nonmetallic dibasic ILs, and their glycolysis catalytic activity was investigated. 1,8-diazabicyclo [5,4,0] undec-7-ene imidazole ([HDBU]Im) exhibited better catalytic performance. Meanwhile, UV radiation is used as a reinforcement method to improve the PET glycolysis efficiency. Under optimal conditions (5 g PET, 20 g ethylene glycol (EG), 0.25 g [HDBU]Im, 10,000 µW·cm-2 UV radiation reacted for 90 min at 185 °C), the PET conversion and BHET yield were 100% and 88.9%, respectively. Based on the UV-visible spectrum, it was found that UV radiation can activate the C=O in PET. Hence, the incorporation of UV radiation can considerably diminish the activation energy of the reaction, shortening the reaction time of PET degradation. Finally, a possible reaction mechanism of [HDBU]Im-catalyzed PET glycolysis under UV radiation was proposed.
Collapse
Affiliation(s)
- Ruiqi Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zheng
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiujie Cheng
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junli Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxia Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (R.Z.); (J.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Jinno A, Ogasawara Y, Hashimoto T, Mitsumoto M, Chang TFM, Sone M, Kurosu H. Solid-State 13C NMR Spectroscopic Study of Supercritical CO2 Catalyzation Treated Polyethylene Terephthalate Textiles for Platinum Metallization. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Shao H, Niu D, Liu B, Xu P, Yang W, Lemstra PJ, Bastiaansen CW, Wang Z, Wang C, Ma P. Mono-layer films with superior barrier properties and full recyclability: The system of Poly(ethylene terephthalate)/Poly(glycolic acid). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Makarewicz C, Safandowska M, Idczak R, Rozanski A. Plastic Deformation of Polypropylene Studied by Positron Annihilation Lifetime Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Cezary Makarewicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz90-363, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz90-237, Poland
| | - Marta Safandowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz90-363, Poland
| | - Rafał Idczak
- Institute of Experimental Physics, University of Wrocław, pl. Maksa Borna 9, Wroclaw50-204, Poland
| | - Artur Rozanski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz90-363, Poland
| |
Collapse
|
9
|
He X, Ye A, Fu X, Yang W, Wang Y. Achieving Low-Energy-Barrier Ion Hopping in Adhesive Composite Polymer Electrolytes by Nanoabsorption. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuewei He
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ang Ye
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xuewei Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
10
|
Mohammadi Avarzman A, Rafizadeh M, Afshar Taromi F. Branched polyester based on the polyethylene tere/iso phthalate and trimellitic anhydride as branching agent. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Suhaimi NAS, Muhamad F, Abd Razak NA, Zeimaran E. Recycling of polyethylene terephthalate wastes: A review of technologies, routes, and applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nur Aina Syafiqah Suhaimi
- Faculty of Engineering, Department of Biomedical Engineering Universiti Malaya Kuala Lumpur Malaysia
| | - Farina Muhamad
- Faculty of Engineering, Department of Biomedical Engineering Universiti Malaya Kuala Lumpur Malaysia
| | - Nasrul Anuar Abd Razak
- Faculty of Engineering, Department of Biomedical Engineering Universiti Malaya Kuala Lumpur Malaysia
| | - Ehsan Zeimaran
- Faculty of Engineering, Department of Biomedical Engineering Universiti Malaya Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Zhou L, Xu PP, Ni SH, Xu L, Lin H, Zhong GJ, Huang HD, Li ZM. Superior Ductile and High-barrier Poly(lactic acid) Films by Constructing Oriented Nanocrystals as Efficient Reinforcement of Chain Entanglement Network and Promising Barrier Wall. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2723-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhu X, Zhang J, Zhu L, Wang R, Gan S, Xue J, Liu X, Li H, Xue Q. Multifunctional recycled wet wipe with negatively charged coating for durable separation of oil/water emulsion via interface charge demulsification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Jalilian M, Joshi AS, Coleman MR, Kim YW, Lawrence JG. Mitigation of the Color Generated During Mechanical Recycling of PET/MXD6 blends. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Hao T, Wang Y, Liu Z, Li J, Shan L, Wang W, Liu J, Tang J. Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2810. [PMID: 34835575 PMCID: PMC8622537 DOI: 10.3390/nano11112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.
Collapse
Affiliation(s)
- Tian Hao
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Yao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jie Li
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Liangang Shan
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenchao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jixian Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jianguo Tang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
16
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Gao H, Cao W, He J, Bai Y. Highly transparent biaxially oriented poly(ester amide) film with improved gas barrier properties and good mechanical strength. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
The Effect of Trifluoroacetic Acid on Molecular Weight Determination of Polyesters: An in Situ NMR Investigation. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2605-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Mondschein RJ, Hostetler J, Arrington CB, Long TE. Hydroxyethylresorcinol- and hydroxyethylhydroquinone-containing poly(ethylene terephthalate) copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Joshi AS, Alipourasiabi N, Vinnakota K, Coleman MR, Lawrence JG. Improved polymerization and depolymerization kinetics of poly(ethylene terephthalate) by co-polymerization with 2,5-furandicarboxylic acid. RSC Adv 2021; 11:23506-23518. [PMID: 35479772 PMCID: PMC9036824 DOI: 10.1039/d1ra04359e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Poly(ethylene terephthalate) (PET), known for its clarity, food safety, toughness, and barrier properties, is a preferred polymer for rigid packaging applications. PET is also one of the most recycled polymers worldwide. In light of climate change, significant efforts are underway to improve the carbon footprint of PET by synthesizing it from bio-based feedstocks. Often times, specific applications demand PET to be copolymerized with other monomers. This work focuses on copolymerization of PET with a bio-based co-monomer, 2,5-furandicarboxylic acid (FDCA) to produce the copolyester (PETF). We report the multifunction of FDCA to influence the esterification reaction kinetics and the depolymerization kinetics (via alkaline hydrolysis) of the copolyester PETF. NMR spectroscopy and titrimetric studies revealed that copolymerization of PET with different levels of FDCA improved the esterification reaction kinetics by enhancing the solubility of monomers. During the alkaline hydrolysis, the presence of FDCA units in the backbone almost doubled the PET conversion and monomer yield. Based on these findings, it is demonstrated that the FDCA facilitates the esterification, as well as depolymerization of PET, and potentially enables reduction of reaction temperatures or shortened reaction times to improve the carbon footprint of the PET synthesis and depolymerization process. Incorporation of the bio-based 2,5-furandicarboxylic acid (FDCA) in poly(ethylene terephthalate) as a copolymer (PETF) improves esterification and depolymerization kinetics due to higher solubility and acidity of FDCA in the reaction media.![]()
Collapse
Affiliation(s)
- Anup S. Joshi
- Department of Chemical Engineering
- University of Toledo
- USA
- Polymer Institute
- University of Toledo
| | - Niloofar Alipourasiabi
- Department of Chemical Engineering
- University of Toledo
- USA
- Polymer Institute
- University of Toledo
| | - Keerthi Vinnakota
- Department of Chemical Engineering
- University of Toledo
- USA
- Polymer Institute
- University of Toledo
| | - Maria R. Coleman
- Department of Chemical Engineering
- University of Toledo
- USA
- Polymer Institute
- University of Toledo
| | - Joseph G. Lawrence
- Department of Chemical Engineering
- University of Toledo
- USA
- Polymer Institute
- University of Toledo
| |
Collapse
|
21
|
Wu AX, Drayton JA, Mizrahi Rodriguez K, Benedetti FM, Qian Q, Lin S, Smith ZP. Elucidating the Role of Fluorine Content on Gas Sorption Properties of Fluorinated Polyimides. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Albert X. Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - James A. Drayton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M. Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Li Y, Qi J, Fan B, Tang J, Lin X, Li Q. The study of solid-liquid equilibrium for dimethyl terephthalate (DMT) in several solvents from T = (298.15 to 330.15) K. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Gao M, Jiao Q, Cui W, Feng C, Zhao Y, Xiang A, Mu X, Ma L. Preparation of PET/LDH composite materials and their mechanical properties and permeability for O2. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meimei Gao
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Wenjia Cui
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 China
| | - Aimin Xiang
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council; Beijing Technology and Business University; Beijing 100048 China
| | - Xiaomin Mu
- Jiangmen New Era Adhesives Technology Co., Ltd.; Guangdong Sheng China
| | - Liang Ma
- Jiangmen New Era Adhesives Technology Co., Ltd.; Guangdong Sheng China
| |
Collapse
|
24
|
Zekriardehani S, Joshi AS, Jabarin SA, Coleman MR. Combined effect of small molecule antiplasticizers and strain induced crystallization on properties of polyethylene terephthalate. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Anup S. Joshi
- Department of Chemical EngineeringUniversity of Toledo Toledo Ohio
| | - Saleh A. Jabarin
- Department of Chemical EngineeringUniversity of Toledo Toledo Ohio
| | - Maria R. Coleman
- Department of Chemical EngineeringUniversity of Toledo Toledo Ohio
| |
Collapse
|
25
|
Heterogeneous CaO(SrO, BaO)/MCF as highly active and recyclable catalysts for the glycolysis of poly(ethylene terephthalate). RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3582-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Joshi AS, Alipourasiabi N, Kim YW, Coleman MR, Lawrence JG. Role of enhanced solubility in esterification of 2,5-furandicarboxylic acid with ethylene glycol at reduced temperatures: energy efficient synthesis of poly(ethylene 2,5-furandicarboxylate). REACT CHEM ENG 2018. [DOI: 10.1039/c8re00086g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enhanced solubility of 2,5-furandicarboxylic acid in ethylene glycol results in faster kinetics at lower temperatures compared to conventional reaction temperatures for polyesters.
Collapse
Affiliation(s)
- Anup S. Joshi
- Department of Chemical Engineering
- University of Toledo
- USA
| | | | - Yong-Wah Kim
- Department of Chemistry and Biochemistry
- University of Toledo
- USA
| | | | | |
Collapse
|