1
|
Wang M, Li C, Napolitano S, Wang D, Liu G. Quantifying and Modeling the Crystallinity of Polymers Confined in Nanopores. ACS Macro Lett 2024; 13:908-914. [PMID: 38990566 DOI: 10.1021/acsmacrolett.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We propose a methodology to characterize the crystalline content of interfacial polymer layers in systems confined at the nanoscale level in a 2D geometry. Based on the crystallinity data of a set of polymers, we introduce a simple model to describe the gradient in crystallinity introduced by confining polymer chains in nanopores. Our model underscores the pivotal role that interfaces play in crystallization and unequivocally contradicts the existence of interfacial "dead" layers where crystallization cannot take place. Further, we verified that the organization of crystals near the pore walls resembles the macromolecular architecture of adsorbed layers, hinting at a strong interplay between crystallization and adsorption.
Collapse
Affiliation(s)
- Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Li
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Agrawal M, Nandan B, Srivastava RK. Unique Crystallization Characteristics of Pickering High Internal Phase Emulsion Templated Porous Constructs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4893-4903. [PMID: 38373200 DOI: 10.1021/acs.langmuir.3c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To study the crystallization behavior of polymeric chains under the influence of porosity, the thermal properties of various nonporous and porous poly(ε-caprolactone) (PCL) based constructs were investigated. Porous cross-linked PCL nanocomposite constructs were fabricated utilizing in situ polymerization of CL-based surfactant-free Pickering high internal phase emulsions (HIPEs), stabilized using modified fumed silica nanoparticles (mSiNP) at a minimal concentration of 0.6 wt %. The corresponding nanocomposite constructs exhibited polyhedral pore morphology with significant pore roughness due to the presence of mSiNP. DSC thermograms of nonporous constructs illustrated diminished crystallization temperature and kinetics upon cross-linking and inclusion of mSiNP which confirmed suppressed mobility of polymer chains. Further introduction of porosity led to substantial supercooling, resulting in crystallization temperatures as low as -24 °C. Changes in the crystal structure of various nonporous and porous constructs were also studied using XRD. The crystallization behavior of porous constructs was finally evaluated using Jeziorny, Ozawa, and Mo theories under nonisothermal conditions. Significant deviation from the theoretical model, as observed in the case of porous constructs, implied a complex crystallization mechanism that eventually was not only controlled by the chain immobility due to cross-linking but also heterogeneity present in the wall thickness of the constructs. The unique melting-crystallization phenomenon observed in such constructs may further be expanded to other systems of high heat capacity for utilization as energy storage materials.
Collapse
Affiliation(s)
- Meenal Agrawal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| |
Collapse
|
3
|
Wang M, Li J, Zhang C, Liu G, Napolitano S, Wang D. Physical Aging of Polystyrene Confined in Anodic Aluminum Oxide Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3471-3480. [PMID: 36802636 DOI: 10.1021/acs.langmuir.2c03505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We investigated the glassy dynamics of polystyrene (PS) confined in anodic aluminum oxide (AAO) nanopores by differential scanning calorimetry. Based on the outcome of our experiments, we show that the cooling rate applied to process the 2D confined PS melt has a significant impact on both the glass transition and the structural relaxation in the glassy state. A single glass transition temperature (Tg) is observed in quenched samples, while slow-cooled PS chains show two Tgs corresponding to a core-shell structure. The former phenomenon resembles what is observed in freestanding structures, while the latter is imputed to the adsorption of PS onto AAO walls. A more complex picture was drawn for physical aging. In the case of quenched samples, we observed a non-monotonic trend of the apparent aging rate that in 400 nm pores, reaches a value almost twice as larger than what is measured in bulk and decreases upon further confinement in smaller nanopores. For slow-cooled samples, by adequately varying the aging conditions, we were able to control the equilibration kinetics and either separate the two aging processes or induce an intermediate aging regime. We propose a possible explanation of these findings in terms of distribution in free volume and the presence of different aging mechanisms.
Collapse
Affiliation(s)
- Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunbo Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Mijangos C, Martin J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers (Basel) 2023; 15:polym15030525. [PMID: 36771824 PMCID: PMC9919978 DOI: 10.3390/polym15030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
In the last few years, the polymerization of monomers within the nanocavities of porous materials has been thoroughly studied and developed, allowing for the synthesis of polymers with tailored morphologies, chemical architectures and functionalities. This is thus a subject of paramount scientific and technological relevance, which, however, has not previously been analyzed from a general perspective. The present overview reports the state of the art on polymerization reactions in spatial confinement within porous materials, focusing on the use of anodized aluminum oxide (AAO) templates. It includes the description of the AAO templates used as nanoreactors. The polymerization reactions are categorized based on the polymerization mechanism. Amongst others, this includes electrochemical polymerization, free radical polymerization, step polymerization and atom transfer radical polymerization (ATRP). For each polymerization mechanism, a further subdivision is made based on the nature of the monomer used. Other aspects of "in situ" polymerization reactions in restricted AAO geometries include: conversion monitoring, kinetic studies, modeling and polymer characterization. In addition to the description of the polymerization process itself, the use of polymer materials derived from polymerization in AAO templates in nanotechnology applications, is also highlighted. Finally, the review is concluded with a general discussion outlining the challenges that remain in the field.
Collapse
Affiliation(s)
- Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Donostia International Physics Center, DIPC, Paseo de Manuel Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Correspondence:
| | - Jaime Martin
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, 15471 Ferrol, Spain
| |
Collapse
|
5
|
Hou C, Zhang W, Dai X, Qiu J, Russell TP, Sun X, Yan S. Spatially Confined Fabrication of Polar Poly(Vinylidene Fluoride) Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205790. [PMID: 36351233 DOI: 10.1002/smll.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Polar poly(vinylidene fluoride) (PVDF) nanotubes have attracted significant attention due to their excellent piezoelectric and ferroelectric properties, yet a tunable fabrication of homogeneous polar PVDF nanotubes remains a challenge. Here, a simple method is reported to fabricate polar PVDF nanotubes using anodize aluminum oxide (AAO) membranes as templates that are removed by etching in a potassium hydroxide (KOH) solution and then ageing at room temperature. PVDF nanotubes originally crystallized in the AAO membrane are pure α-crystals with very low crystallinity, yet after being released from the templates, the crystallinity of the nanotubes markedly increases with ageing at room temperature, leading to the formation of β-PVDF crystals in a very short time, with the formation of γ crystals after longer ageing times. A large amount of γ crystals formed when the released PVDF nanotubes are heated to ≈130 °C. The formation of polar PVDF nanotubes released from the AAO templates treated with higher concentrations of alkaline solution results from the reaction of the surface of the PVDF nanotubes with the alkaline solution and structure reorganization under confined conditions. This large-scale preparation of β- and γ-PVDF opens a new pathway to produce polar PVDF nanomaterials.
Collapse
Affiliation(s)
- Chunyue Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiying Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
6
|
Bersenev EA, Nikitina EA, Dashtimoghadam E, Sheiko SS, Ivanov DA. Bottlebrush Elastomers with Crystallizable Side Chains: Monitoring Configuration of Polymer Backbones in the Amorphous Regions during Crystallization. ACS Macro Lett 2022; 11:1085-1090. [PMID: 35998353 DOI: 10.1021/acsmacrolett.2c00394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brush-like elastomers with crystallizable side chains hold promise for biomedical applications requiring the presence of two distinct mechanical states below and above body temperature: hard and supersoft. The hard semicrystalline state facilitates piercing of the body whereupon the material softens to match the mechanics of surrounding soft tissue. To understand the transition between the two states, the crystallization process was studied with synchrotron X-ray scattering for a series of brush elastomers with poly(ε-caprolactone) side chains bearing from 7 to 13 repeat units. The so-called bottlebrush correlation peak was used to monitor configuration of bottlebrush backbones in the amorphous regions during the crystallization process. In the course of crystallization, the backbones are expelled into the interlamellar amorphous gaps, which is accompanied by their conformational changes and leads to partitioning to unconfined (melt) and confined (semicrystalline) (conformational) states. The crystallization process starts by consumption of the unconfined macromolecules by the growing crystals followed by reconfiguration of macromolecules within the already grown spherulites.
Collapse
Affiliation(s)
- Egor A Bersenev
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russian Federation.,Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russian Federation
| | - Evgeniia A Nikitina
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russian Federation.,Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russian Federation
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Dimitri A Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russian Federation.,Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russian Federation.,Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, F-68057 Mulhouse, France.,Sirius University of Science and Technology, 1 Olympic Avenue, 354340, Sochi, Russian Federation
| |
Collapse
|
7
|
Hübner H, Niebuur B, Janka O, Gemmer L, Koch M, Kraus T, Kickelbick G, Stühn B, Gallei M. Crystalline Carbosilane‐Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hanna Hübner
- Chair in Polymer Chemistry Universität des Saarlandes Campus Saarbrücken Saarbrücken 66123 Germany
| | - Bart‐Jan Niebuur
- INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Oliver Janka
- Inorganic Solid‐State Chemistry Saarland University Campus C4 1 66123 Saarbrücken Germany
| | - Lea Gemmer
- Chair in Polymer Chemistry Universität des Saarlandes Campus Saarbrücken Saarbrücken 66123 Germany
| | - Marcus Koch
- INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Tobias Kraus
- INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
- Colloid and Interface Chemistry Saarland University Campus D2 2 66123 Saarbrücken Germany
| | - Guido Kickelbick
- Inorganic Solid‐State Chemistry Saarland University Campus C4 1 66123 Saarbrücken Germany
| | - Bernd Stühn
- Institute for Condensed Matter Physics Technical University of Darmstadt Hochschulstraße 8 64289 Darmstadt Germany
| | - Markus Gallei
- Chair in Polymer Chemistry Universität des Saarlandes Campus Saarbrücken Saarbrücken 66123 Germany
- Saarene, Saarland Center for Energy Materials and Sustainability Campus C4 2 66123 Saarbrücken Germany
| |
Collapse
|
8
|
Extruded polypropylene foams with radially gradient porous structures and selective filtration property via supercritical CO2 foaming. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ok S, Vayer M, Sinturel C. A decade of innovation and progress in understanding the morphology and structure of heterogeneous polymers in rigid confinement. SOFT MATTER 2021; 17:7430-7458. [PMID: 34341814 DOI: 10.1039/d1sm00522g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When confined in nanoscale domains, polymers generally encounter changes in their structural, thermodynamics and dynamics properties compared to those in the bulk, due to the high amount of polymer/wall interfaces and limited amount of matter. The present review specifically deals with the confinement of heterogeneous polymers (i.e. polymer blends and block copolymers) in rigid nanoscale domains (i.e. bearing non-deformable solid walls) where the processes of phase separation and self-assembly can be deeply affected. This review focuses on the innovative contributions of the last decade (2010-2020), giving a summary of the new insights and understanding gained in this period. We conclude this review by giving our view on the most thriving directions for this topic.
Collapse
Affiliation(s)
- Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait.
| | | | | |
Collapse
|
10
|
Abstract
Crystallization of polymeric materials under nanoscopic confinement is highly relevant for nanotechnology applications. When a polymer is confined within rigid nanoporous anodic aluminum oxide (AAO) templates, the crystallization behavior experiences dramatic changes as the pore size is reduced, including nucleation mechanism, crystal orientation, crystallization kinetics, and polymorphic transition, etc. As an experimental prerequisite, exhaustive cleaning procedures after infiltrations of polymers in AAO pores must be performed to ensure producing an ensemble of isolated polymer-filled nanopores. Layers of residual polymers on the AAO surface percolate nanopores and lead to the so-called "fractionated crystallization", i.e., multiple crystallization peaks during cooling.Because the density of isolated nanopores in a typical AAO template exceeds the density of heterogeneities in bulk polymers, the majority of nanopores will be heterogeneity-free. This means that the nucleation will proceed by surface or homogeneous nucleation. As a consequence, a very large supercooling is necessary for crystallization, and its kinetics is reduced to a first-order process that is dominated by nucleation. Self-nucleation is a powerful method to exponentially increase nucleation density. However, when the diameter of the nanopores is lower than a critical value, confinement prevents the possibility to self-nucleate the material.Because of the anisotropic nature of AAO pores, polymer crystals inside AAO also exhibit anisotropy, which is determined by thermodynamic stability and kinetic selection rules. For low molecular weight poly(ethylene oxide) (PEO) with extended chain crystals, the orientation of polymer crystals changes from the "chain perpendicular to" to the "chain parallel to" the AAO pore axis, when the diameter of AAO decreases to the contour length of the PEO, indicating the effect of thermodynamic stability. When the thermodynamic requirement is satisfied, the orientation is determined by kinetics including crystal growth direction, nucleation, and crystal growth rate. An orientation diagram has been established for the PEO/AAO system, considering the cooling condition and pore size.The interfacial polymer layer has different physical properties as compared to the bulk. In poly(l-lactic acid), the relationship between the segmental mobility of the interfacial layer and crystallization rate is established. For the investigation of polymorphic transition of poly(butane-1), the results indicate that a 12 nm interfacial layer hinders the transition of Form II to Form I. Block and random copolymers have also been infiltrated into AAO nanopores, and their crystallization behavior is analogously affected as pore size is reduced.
Collapse
Affiliation(s)
- Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Liu Y, Wu Y, Yao J, Yin J, Lu J, Mao J, Yao M, Luo F. Confined Crystallization and Melting Behaviors of 3-Pentadecylphenol in Anodic Alumina Oxide Nanopores. ACS OMEGA 2021; 6:18235-18247. [PMID: 34308054 PMCID: PMC8296606 DOI: 10.1021/acsomega.1c02112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
To explore the effects of end groups on the confined crystallization of an alkyl chain, 3-pentadecylphenol (PDP) was infiltrated into the anodic aluminum oxide template (AAO) to investigate the melting and crystallization behaviors of PDP in a nanoconfined environment. Wide-angle X-ray diffraction (WAXD) found that the solid-solid phase transition of PDP occurred under confined conditions, and the absence of the (00L) reflections indicated that the stacking of the end groups of the alkyl chain layered structure was seriously disturbed. Thermal analysis (TG) showed that the thermal stability of the confined samples decreased due to the confinement effect, and the introduction of end groups made the confinement effect more obvious. Differential scanning calorimeter (DSC) results well reflected the space-time equivalence in the PDP crystallization processes, i.e., the solid-solid phase transition can be achieved by reducing the cooling rate or confining PDP in the nanometer space. Compared with C15, the introduction of the end groups with a phenol ring led to the disappearance of the solid-solid phase transition of an alkyl chain at high cooling rates. In the confined environment, the introduction of the end groups with a phenol ring caused the melting double peaks of the alkyl chain to become a single melting peak, and it also caused the disappearance of the surface freezing monolayer for alkyl chains. Through the analysis of crystallinity, it was found that AAO-PDP was more sensitive to AAO pore size changes than AAO-C15, the X c of AAO-PDP had a good linear relationship with the pore size d, but the X c of the AAO-C15 had a nonlinear relationship with the pore size d. Attenuated total reflection (ATR)-IR proved that in the confined environment, the order of the alkyl chain decreased and the degree of chain distortion increased.
Collapse
Affiliation(s)
- Yongdong Liu
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Yonghong Wu
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jianqi Yao
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jiajie Yin
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jing Lu
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jie Mao
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Min Yao
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
- Ningxia
Baofeng Energy Group, Yinchuan 750001, China
| | - Faliang Luo
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| |
Collapse
|
12
|
Wang M, Li J, Shi G, Liu G, Müller AJ, Wang D. Suppression of the Self-Nucleation Effect of Semicrystalline Polymers by Confinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Thitisomboon W, Gu Q, Weng LT, Gao P. Surface confinement induced amorphization of polyethylene oxide in high-performance porous polyethylene films. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Lin YL, Tsai SY, He HC, Lee LR, Ho JH, Wang CL, Chen JT. Crystallization of Poly(methyl methacrylate) Stereocomplexes under Cylindrical Nanoconfinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Song-Yu Tsai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hung-Chieh He
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhih-Hao Ho
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
16
|
Shi G, Wang Z, Wang M, Liu G, Cavallo D, Müller AJ, Wang D. Crystallization, Orientation, and Solid–Solid Crystal Transition of Polybutene-1 Confined within Nanoporous Alumina. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zefan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Safari M, Leon Boigues L, Shi G, Maiz J, Liu G, Wang D, Mijangos C, Müller AJ. Effect of Nanoconfinement on the Isodimorphic Crystallization of Poly(butylene succinate-ran-caprolactone) Random Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Laia Leon Boigues
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
- Departamento de Física de Materiales, University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Wang B, Utzeri R, Castellano M, Stagnaro P, Müller AJ, Cavallo D. Heterogeneous Nucleation and Self-Nucleation of Isotactic Polypropylene Microdroplets in Immiscible Blends: From Nucleation to Growth-Dominated Crystallization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bao Wang
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| | - Roberto Utzeri
- Institute for Chemical Sciences and Technologies “Giulio Natta” (SCITEC), CNR, Via De Marini 6, 16149 Genova, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paola Stagnaro
- Institute for Chemical Sciences and Technologies “Giulio Natta” (SCITEC), CNR, Via De Marini 6, 16149 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
19
|
Li L, Li T, Arras MM, Bonnesen PV, Peng X, Li W, Hong K. Chain arrangements of selectively deuterated poly(ε-caprolactone) copolymers as revealed by neutron scattering. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Yang H, Cai Z, Liu H, Cao Z, Xia Y, Ma W, Gong F, Tao G, Liu C. Compatibilization of polypropylene/poly(glycolic acid) blend with maleated poe/attapulgite hybrid compatibilizer: Evaluation of mechanical, thermal, rheological, and morphological characteristics. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Zinan Cai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
| | - Haotian Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
- Key Laboratory of High Performance Fibers & Products, Ministry of EducationDonghua University Shanghai China
| | - Yanping Xia
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Fanghong Gong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- School of Mechanical TechnologyWuxi Institute of Technology Wuxi Jiangsu China
| | - Guoliang Tao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| |
Collapse
|
21
|
Ma MC, Guo YL. Physical Properties of Polymers Under Soft and Hard Nanoconfinement: A Review. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2380-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Safari M, Maiz J, Shi G, Juanes D, Liu G, Wang D, Mijangos C, Alegría Á, Müller AJ. How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15168-15179. [PMID: 31621336 DOI: 10.1021/acs.langmuir.9b02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The crystallization behaviors and crystalline structures of both polymers, bulk and confined, were analyzed by differential scanning calorimetry (DSC) and grazing incidence wide angle X-ray scattering (GIWAXS). DSC revealed that a change in the nucleation process occurred from heterogeneous nucleation for bulk samples to homogeneous nucleation for infiltrated PBA and to surface-induced nucleation for infiltrated PBS. GIWAXS results indicate that PBS nanofibers crystallize in the α-phase, as well as their bulk samples. However, PBA nanofibers crystallize just in the β-phase, whereas PBA bulk samples crystallize in a mixture of α- and β-phases. The crystal orientation within the pores was determined, and differences between PBS and PBA were also found. Finally, broadband dielectric spectroscopy was applied to study the segmental dynamics for bulk and infiltrated samples. The glass temperature was found to significantly decrease in the PBS case upon infiltration, while that of PBA remained unchanged. These differences were correlated with the higher affinity of PBS to the AAO walls than PBA, in accordance with their nucleation behavior (surface-induced versus homogeneous nucleation, respectively).
Collapse
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Diana Juanes
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Ángel Alegría
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
23
|
Kikuchi H, Watanabe T, Marubayashi H, Ishizone T, Nojima S, Yamaguchi K. Control of crystal orientation of spatially confined PCL homopolymers by cleaving chain-ends of PCL blocks tethered to nanolamella interfaces. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Su C, Chen Y, Shi G, Li T, Liu G, Müller AJ, Wang D. Crystallization Kinetics of Poly(ethylene oxide) under Confinement in Nanoporous Alumina Studied by in Situ X-ray Scattering and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11799-11808. [PMID: 31407905 DOI: 10.1021/acs.langmuir.9b01968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While a relatively complete understanding of the nucleation and orientation of polymers under confinement in one-dimensional nanochannels has been achieved, crystallization kinetics investigation of confined polymers is still rare. In this work, we investigated the crystallization kinetics of poly(ethylene oxide) confined in anodic alumina oxide templates with different pore sizes using in situ wide-angle X-ray scattering (WAXS). The crystallization kinetics results were fitted with the Avrami equation. The Avrami index was determined by both "isothermal step crystallization" and in situ WAXS. The crystallization process of polymers under one-dimensional nanopore confinement was simulated by a "one-dimensional lattice model". Based on this model, it is shown that homogeneous nucleation with the simultaneous growth of multiple crystal planes with drastically different growth rates could result in Avrami indexes lower than 1.
Collapse
Affiliation(s)
- Cui Su
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Tang Li
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizabal 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
25
|
Shi G, Guan Y, Liu G, Müller AJ, Wang D. Segmental Dynamics Govern the Cold Crystallization of Poly(lactic acid) in Nanoporous Alumina. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00542] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Guangyu Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Guan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Zeng X, Zhang S, Zheng N, Yu S, Li X, Ageishi M, Lotz B, Liu G, Cao Y. Diversified α-phase nanostructure of isotactic polypropylene under cylindrical confinement via cross diffraction analysis. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Chen Z, Lau KKS. Suppressing Crystallinity by Nanoconfining Polymers Using Initiated Chemical Vapor Deposition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhengtao Chen
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth K. S. Lau
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Yildirim A, Sentker K, Smales GJ, Pauw BR, Huber P, Schönhals A. Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement. NANOSCALE ADVANCES 2019; 1:1104-1116. [PMID: 36133215 PMCID: PMC9473266 DOI: 10.1039/c8na00308d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 05/30/2023]
Abstract
The phase behavior and molecular ordering of hexakishexyloxy triphenylene (HAT6) DLCs under cylindrical nanoconfinement are studied utilizing differential scanning calorimetry (DSC) and dielectric spectroscopy (DS), where cylindrical nanoconfinement is established through embedding HAT6 into the nanopores of anodic aluminum oxide (AAO) membranes, and a silica membrane with pore diameters ranging from 161 nm down to 12 nm. Both unmodified and modified pore walls were considered. In the latter case the pore walls of AAO membranes were chemically treated with n-octadecylphosphonic acid (ODPA) resulting in the formation of a 2.2 nm thick layer of grafted alkyl chains. Phase transition enthalpies decrease with decreasing pore size, indicating that a large proportion of the HAT6 molecules within the pores has a disordered structure, which increases with decreasing pore size for both pore walls. In the case of the ODPA-modification, the amount of ordered HAT6 is increased compared to the unmodified case. The pore size dependencies of the phase transition temperatures were approximated using the Gibbs-Thomson equation, where the estimated surface tension is dependent on the molecular ordering of HAT6 molecules within the pores and upon their surface. DS was employed to investigate the molecular ordering of HAT6 within the nanopores. These investigations revealed that with a pore size of around 38 nm, for the samples with the unmodified pore walls, the molecular ordering changes from planar axial to homeotropic radial. However, the planar axial configuration, which is suitable for electronic applications, can be successfully preserved through ODPA-modification for most of the pore sizes.
Collapse
Affiliation(s)
- Arda Yildirim
- Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-3384
| | - Kathrin Sentker
- Institut für Materialphysik und-technologie, Technische Universität Hamburg Eißendorfer Str. 42 21073 Hamburg Germany
| | - Glen Jacob Smales
- Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-3384
| | - Brian Richard Pauw
- Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-3384
| | - Patrick Huber
- Institut für Materialphysik und-technologie, Technische Universität Hamburg Eißendorfer Str. 42 21073 Hamburg Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-3384
| |
Collapse
|
29
|
Hernández JJ, Puente-Orench I, Ezquerra TA, Gutiérrez-Fernández E, García-Gutiérrez MC. Confinement effects in one-dimensional nanoarrays of polymer semiconductors and their photovoltaic blends. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Combined effects of confinement size and chain-end tethering on the crystallization of poly(ε-caprolactone) chains in nanolamellae. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Su C, Shi G, Li X, Zhang X, Müller AJ, Wang D, Liu G. Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cui Su
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Shi
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Li
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
32
|
Blaszczyk-Lezak I, Juanes D, Martín J, Mijangos C. Gecko-like Branched Polymeric Nanostructures from Nanoporous Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11449-11453. [PMID: 30157645 DOI: 10.1021/acs.langmuir.8b01923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we report a simple method to produce hierarchically shaped polymeric one-dimensional nanostructures. More specifically, dual-sized polymer nanowires are fabricated employing multibranched anodic aluminum oxide templates. By fine selection of the anodization conditions, we achieve branched nanopores having a first segment of 400 nm in diameter from which seven further 55 nm in diameter pores arise. Wetting of such nanopores with polymer melts-for example, poly(ε-caprolactone) and polystyrene-allows for the nanomolding of their respective inverse nanostructures, that is, dual-sized multibranched polymer nanowires that, when supported on a flat surface, strongly resemble the spatulae of geckos' toes. The structural features of the dual-sized polymer nanostructures, namely, crystalline phase, crystallinity, texture, and so on, are furthermore characterized and interpreted within the context of polymer phase transitions in confined media. Our work presents a readily applicable approach to produce soft nanomaterials of high morphological complexity, thereby with promising implications in the nanotechnology area, for example, in biomimetic solid adhesion.
Collapse
Affiliation(s)
- Iwona Blaszczyk-Lezak
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Diana Juanes
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Jaime Martín
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Manuel de Lardizabal 3 , 20018 Donostia-San Sebastián , Spain
- Ikerbasque, Basque Foundation for Science , E-48011 Bilbao , Spain
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizábal 2 , 20018 Donostia-San Sebastián , Spain
- Materials Physics Center (CFM) , CSIC-UPV/EHU , Paseo Manuel de Lardizábal 5 , 20018 Donostia-San Sebastián , Spain
| |
Collapse
|
33
|
Dai X, Li H, Ren Z, Russell TP, Yan S, Sun X. Confinement Effects on the Crystallization of Poly(3-hydroxybutyrate). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiying Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
34
|
Liu CL, Chen HL. Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels. SOFT MATTER 2018; 14:5461-5468. [PMID: 29911721 DOI: 10.1039/c8sm00795k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.
Collapse
Affiliation(s)
- Chien-Liang Liu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | | |
Collapse
|