1
|
Li Z, Shen Z, Pei Y, Chao S, Pei Z. Covalently bridged pillararene-based polymers: structures, synthesis, and applications. Chem Commun (Camb) 2023; 59:989-1005. [PMID: 36621829 DOI: 10.1039/d2cc05594e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalently bridged pillararene-based polymers (CBPPs) are a special class of macrocycle-based polymers in which multiple pillararene monomers are attached to the polymer structures by covalent bonds. Owing to the unique molecular structures including the connection components or the spatial structures, CBPPs have become increasingly popular in applications ranging from environmental science to biomedical science. In this review, CBPPs are divided into three types (linear polymers, grafted polymers, and cross-linked polymers) according to their structural characteristics and described from the perspective of synthesis methods comprehensively. In addition, the applications of CBPPs are presented, including selective adsorption and separation, fluorescence sensing and detection, construction of supramolecular gels, anticancer drug delivery, artificial light-harvesting, catalysis, and others. Finally, the current challenging issues and comprehensive prospects of CBPPs are discussed.
Collapse
Affiliation(s)
- Zhanghuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Enhancing Mechanical Performance of a Polymer Material by Incorporating Pillar[5]arene-Based Host–Guest Interactions. Gels 2022; 8:gels8080475. [PMID: 36005076 PMCID: PMC9407059 DOI: 10.3390/gels8080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Polymer gels have been widely used in the field for tissue engineering, sensing, and drug delivery due to their excellent biocompatibility, hydrophilicity, and degradability. However, common polymer gels are easily deformed on account of their relatively weak mechanical properties, thereby hindering their application fields, as well as shortening their service life. The incorporation of reversible non-covalent bonds is capable of improving the mechanical properties of polymer gels. Thus, here, a poly(methyl methacrylate) polymer network was prepared by introducing host–guest interactions between pillar[5]arene and pyridine cation. Owing to the incorporated host–guest interactions, the modified polymer gels exhibited extraordinary mechanical properties according to the results of the tensile tests. In addition, the influence of the host–guest interaction on the mechanical properties of the gels was also proved by rheological experiments and swelling experiments.
Collapse
|
3
|
Jin C, Park J, Shirakawa H, Osaki M, Ikemoto Y, Yamaguchi H, Takahashi H, Ohashi Y, Harada A, Matsuba G, Takashima Y. Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds. SOFT MATTER 2022; 18:5027-5036. [PMID: 35695164 DOI: 10.1039/d2sm00408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyurethane (PU) materials with movable crosslinking were prepared by a typical two-step synthetic process using an acetylated γ-cyclodextrin (TAcγCD) diol compound. The soft segment of PU is polytetrahydrofuran (PTHF), and the hard segment consists of hexamethylene diisocyanate (HDI) and 1,3-propylene glycol (POD). The synthesized PU materials exhibited the typical mechanical characteristics of a movable crosslinking network, and the presence of hydrogen bonds from the urethane bonds resulted in a synergistic effect. Two kinds of noncovalent bond crosslinking increased the Young's modulus of the material without affecting its toughness. Fourier transform infrared spectroscopy and X-ray scattering measurements were performed to analyze the effect of introducing movable crosslinking on the internal hydrogen bond and the microphase separation structure of PU, and the results showed that the carbonyl groups on TAcγCD could form hydrogen bonds with the PU chains and that the introduction of movable crosslinking weakened the hydrogen bonds between the hard segments of PU. When stretched, the movable crosslinking of the PU materials suppressed the orientation of polymer chains (shish-kebab orientation) in the tensile direction. The mechanical properties of the movable crosslinked PU materials show promise for future application in the industrial field.
Collapse
Affiliation(s)
- Changming Jin
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hidenori Shirakawa
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (SPring-8) Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Takahashi
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Yasumasa Ohashi
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Material Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Moharana P, Santosh G. Organogels Fabricated from Self-Assembled Nanotubes Containing Core Substituted Perylene Diimide Derivative. ACS OMEGA 2022; 7:21932-21938. [PMID: 35785309 PMCID: PMC9245106 DOI: 10.1021/acsomega.2c02210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 05/27/2023]
Abstract
Perylene-based organogels are well-known for their applications as sensors and optoelectronic materials. Among them, core-substituted perylene diimide-based organogels are rarely explored. Herein, the hierarchical self-assembly mechanism of a newly synthesized, amide-linked core-substituted perylene diimide derivative, which formed organogels in organic solvents like toluene and methyl cyclohexane (MCH), is discussed. These organogels are composed of one-dimensional molecular aggregates like nanofibers and nanotubes. Organogels composed of nanofibers are very frequent. On the contrary, for the first time, we have encountered a perylene diimide-based organogel consisting of self-assembled nanotubes. The molecular interactions, molecular packing, and rheological properties of this organogel are also discussed.
Collapse
|
5
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
6
|
Xue HF, Huang YX, Dong M, Zhang ZY, Li C. Stabilization of Antitumor Agent Busulfan through the Encapsulation within a Water-Soluble Pillar[5]arene. Chem Asian J 2022; 17:e202101332. [PMID: 35040585 DOI: 10.1002/asia.202101332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Indexed: 11/12/2022]
Abstract
The complexation of antitumor agent busulfan by negatively charged carboxylatopillar[5]arenein water is reported. The encapsulation within carboxylatopillar[5]arenein reduces the hydrolytic degradation of busulfan from 90.7 % to 25.2 % after 24 days and accordingly enhances its stability by providing a hydrophobic shelter for busulfan in water. Moreover, the complexation result in 12 times improvement of water solubility for busulfan. Our result provides a supramolecular approach for stabilizing the anticancer agent busulfan.
Collapse
Affiliation(s)
- Hui-Feng Xue
- Tianjin Normal University, College of Chemistry, CHINA
| | - Yu-Xi Huang
- Tianjin Normal University, College of Chemistry, CHINA
| | - Ming Dong
- Tianjin Normal University, College of Chemistry, CHINA
| | - Zhi-Yuan Zhang
- Tianjin Normal University, Department of Chemistry, 300387, Tianjin, CHINA
| | - Chunju Li
- Shanghai University, Chemistry, 99 Shangda Road, 200443, Shanghai, CHINA
| |
Collapse
|
7
|
Wu Q, Zhang T, Li X, Tu X, Zhang H, Han J. Construction of pillar[5]arene-based photochromic supramolecular polymeric system with tunable thermal bleaching rate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Kato K, Onishi K, Maeda K, Yagyu M, Fa S, Ichikawa T, Mizuno M, Kakuta T, Yamagishi TA, Ogoshi T. Thermally Responsive Poly(ethylene oxide)-Based Polyrotaxanes Bearing Hydrogen-Bonding Pillar[5]arene Rings*. Chemistry 2021; 27:6435-6439. [PMID: 33543802 DOI: 10.1002/chem.202005099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Indexed: 11/09/2022]
Abstract
Poly(ethylene oxide)s (PEOs) are useful polymers with good water solubility, biological compatibility, and commercial availability. PEOs with various end groups were threaded into pillar[5]arene rings in a mixture of water and methanol to afford pseudopolyrotaxanes. Corresponding polyrotaxanes were also constructed by capping COOH-terminated pseudopolyrotaxanes with bulky amines, in which multiple hydrogen bonds involving the pillar[5]arene OH groups were critically important to prevent dethreading. The number of threaded ring components could be rationally controlled in these materials, providing a simple and versatile method to tune the mechanical and thermal properties. Specifically, a polyrotaxane with a high-molecular-weight axle became elastic upon heating above the melting point of PEOs and exhibited temperature-dependent shape memory property because of the topological confinement and crosslinked hydrogen bonds.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Katsuto Onishi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Koki Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Masafumi Yagyu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Takahiro Ichikawa
- Department of Biotechnology, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo, 1848588, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| |
Collapse
|
9
|
Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021; 181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
The ingenious design and synthesis of novel macrocycles bring out renewed vigor of supramolecular chemistry in the past decade. As an intriguing class of macrocycles, pillararene and pillararene-based functional materials that are constructed through the noncovalent bond self-assembly approach have been undergoing a rapid growth, benefiting from their unique structures and physiochemical properties. This review elaborates recent significant advances of electrochemical studies based on pillararene systems. Fundamental electrochemical behavior of pillar[n]arene[m]quinone and pillararene-based self-assemblies as well as their applications in electrochemical biosensors are highlighted. In addition, the advantages and functions of pillararene self-assembly systems resulted from the unique molecular architectures are analyzed. Finally, current challenges and future development tendency in this burgeoning field are discussed from the viewpoint of both fundamental research and applications. Overall, this review not only manifests the main development vein of pillararene-based electrochemical systems, but also conquers a solid foundation for their further bioelectrochemical applications.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
10
|
Kardelis V, Denk MM, Adronov A. Click-Functionalization of a Poly(Tetrazine-co-Fluorene)-Conjugated Polymer with a Series of trans-Cyclooctene Derivatives. Angew Chem Int Ed Engl 2021; 60:2980-2986. [PMID: 33258541 DOI: 10.1002/anie.202010795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/17/2020] [Indexed: 12/25/2022]
Abstract
A soluble poly(tetrazine) polymer was prepared via Suzuki polycondensation of 3,6-bis(5-bromofuran-2-yl)-1,2,4,5-tetrazine and a fluorene diboronate derivative. It can undergo efficient and quantitative post-polymerization inverse-electron-demand Diels-Alder click reactions with a variety of trans-cyclooctene (TCO) derivatives. The resulting polymers were oxidized to convert dihydropyridazine rings into pyridazines. The absorption spectra of the product polymers, both before and after oxidation, showed hypsochromic shifts that correlated with steric hindrance of the appended side chains. They also exhibited a significantly enhanced fluorescence intensity relative to the original poly(tetrazine). While gel-permeation chromatography indicated that the product polymers exhibited longer retention times, NMR end-group analysis showed that the polymers retained relatively constant degrees of polymerization. Graft copolymers were easily prepared via reaction with TCO-functionalized poly(ethylene glycol) chains and a cross-linked foam was produced by reacting the poly(tetrazine) with a bis-TCO crosslinker.
Collapse
Affiliation(s)
- Vladimir Kardelis
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Maria M Denk
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
11
|
Li K, Fong D, Meichsner E, Adronov A. A Survey of Strain-Promoted Azide-Alkyne Cycloaddition in Polymer Chemistry. Chemistry 2021; 27:5057-5073. [PMID: 33017499 DOI: 10.1002/chem.202003386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide-alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.
Collapse
Affiliation(s)
- Kelvin Li
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Darryl Fong
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
12
|
Hirao T, Fukuta K, Haino T. Polymerization of a biscalix[5]arene derivative. RSC Adv 2021; 11:17587-17594. [PMID: 35480194 PMCID: PMC9033180 DOI: 10.1039/d1ra02276h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Recent decades have seen an increased interest in the preparation of polymers possessing host or guest moieties as the end group, which has enabled new polymeric materials such as self-healable, shape-memory, and stimuli-responsive materials. Such polymers are commonly synthesized by tethering the host or guest moieties to polymers. On the other hand, there are limited reports demonstrating the preparation of host- or guest-appended polymers by directly polymerizing the corresponding host- or guest-appended monomers, which is valuable for easy access to diverse polymers from single molecular species. However, reactive host and/or guest moieties of the monomer interfere with the polymerization reaction. Here, we report that a biscalix[5]arene host-appended molecule can be polymerized with various monomers to form the corresponding host-appended polymers. The host–guest complexation behavior of calix[5]arene-appended polymers with fullerene derivatives was studied by 1H NMR and UV/Vis spectroscopic techniques, which revealed that the long polymer chains did not prevent host–guest complexation even when the fullerene derivative was equipped with a polymer chain. Thus, the present study shows the potential for developing polymers that have various combinations of polymer chains. A calix[5]arene appended monomer molecule was subjected to polymerization reaction to yield corresponding methacrylate polymers. The calix[5]arene appended polymers showed excellent encapsulation capability for fullerene molecules.![]()
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Kazushi Fukuta
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
13
|
Vasdev R, Luo W, Classen K, Anghel M, Novoa S, Workentin MS, Gilroy JB. Strained alkyne polymers capable of SPAAC via ring-opening metathesis polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01177d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a strategy that combines the attractive traits of chain-growth polymerization and strain-promoted azide–alkyne cycloaddition chemistry for the production of functional polymers.
Collapse
Affiliation(s)
- Rajeshwar Vasdev
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, Canada
| | - Wilson Luo
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, Canada
| | - Kyle Classen
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, Canada
| | - Michael Anghel
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, Canada
| | - Samantha Novoa
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, Canada
| | - Mark S. Workentin
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Abstract
The synthesis and application of promising polymeric materials–pillararene-based conjugated porous polymers–are discussed and summarized in this review.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chao Li
- Department of Laboratory
- Shandong University Hospital
- Jinan 250100
- China
| |
Collapse
|
16
|
Sun XW, Wang ZH, Li YJ, Zhang YF, Zhang YM, Yao H, Wei TB, Lin Q. Tri-pillar[5]arene-Based Multifunctional Stimuli-Responsive Supramolecular Polymer Network with Conductivity, Aggregation-Induced Emission, Thermochromism, Fluorescence Sensing, and Separation Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhong-Hui Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying-Jie Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun-Fei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
17
|
Kardelis V, Denk MM, Adronov A. Click‐Functionalization of a Poly(Tetrazine‐co‐Fluorene)‐Conjugated Polymer with a Series of
trans
‐Cyclooctene Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vladimir Kardelis
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research McMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Maria M. Denk
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research McMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research McMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
18
|
Shin G, Khazi MI, Kim JM. Protonation-Triggered Supramolecular Gel from Macrocyclic Diacetylene: Gelation Behavior, Topochemical Polymerization, and Colorimetric Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13971-13980. [PMID: 33175557 DOI: 10.1021/acs.langmuir.0c02469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular gels originating from the hierarchical self-assembly of low molecular weight organic molecules is a strongly emerging field of advanced material research for the fabrication of soft functional materials. Herein, a novel supramolecular gel was fabricated through the protonation-triggered unidirectional self-assembly of pyridine-attached macrocyclic diacetylene (PyMCDA). Basic nitrogen of a pyridine ring with a strong affinity toward proton transforms the neutral PyMCDA into gelator in its protonated pyridinium salt form (PyMCDA-H+), which further evolves to nano-fibrillar networks to yield a supramolecular gel. Under the irradiation of UV light, the white color gel turned to a robust covalently cross-linked blue-phase PDA gel. Interestingly, polymeric PyMCPDA-H+ gel exhibits a naked-eye detectable reversible blue-red colorimetric response for alternating acid/base (H2SO4/NH4OH) and colorimetric sensitivity toward selected anions: CH3COO-, CN-, HCOO-, and CH3CH2COO-. It is with the hope that this work point toward the utility and versatility of macrocyclic PDAs for constructing chromogenic supramolecular gels for their possible use in sensing systems.
Collapse
Affiliation(s)
- Geon Shin
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Mohammed Iqbal Khazi
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
19
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
20
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
21
|
Hu JP, He JX, Fang H, Yang HH, Zhang Q, Lin Q, Yao H, Zhang YM, Wei TB, Qu WJ. A novel pillar[5]arene-based emission enhanced supramolecular sensor for dual-channel selective detection and separation of Hg2+. NEW J CHEM 2020. [DOI: 10.1039/d0nj02362k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We constructed a supramolecular sensor (APRA–G) via a host–guest inclusion interaction between a rhodamine hydrazide-functionalized pillar[5]arene (APRA) and a bipyridine salt guest (G), which formed a stable dimer.
Collapse
|
22
|
Zhang R, Yan X, Guo H, Hu L, Yan C, Wang Y, Yao Y. Supramolecular polymer networks based on pillar[5]arene: synthesis, characterization and application in the Fenton reaction. Chem Commun (Camb) 2020; 56:948-951. [DOI: 10.1039/c9cc09155f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New supramolecular networks with ferrocene units were efficiently constructed via orthogonal pillar[5]arene-based host–guest and H-bonding interaction. It can be applied in Fenton-like reaction in water.
Collapse
Affiliation(s)
- Runmiao Zhang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Xin Yan
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Hao Guo
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| |
Collapse
|
23
|
Boominathan M, Kiruthika J, Arunachalam M. Construction of anion‐responsive crosslinked polypseudorotaxane based on molecular recognition of pillar[5]arene. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muniyappan Boominathan
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Jeyavelraman Kiruthika
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Murugan Arunachalam
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| |
Collapse
|
24
|
Zhang GW, Luo MC, Lei JQ, Zhong TT, Wei Y, Xie LH, Huang W. Substituent effects on fluorene-based linear supramolecular polymerizsation. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1609679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Guang-Wei Zhang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Meng-Cheng Luo
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Jia-Qi Lei
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Tao-Tao Zhong
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Ying Wei
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Ling-Hai Xie
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Wei Huang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an, Shaanxi, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
25
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
26
|
Kaizerman-Kane D, Hadar M, Granot E, Patolsky F, Zafrani Y, Cohen Y. Shape induced sorting via rim-to-rim complementarity in the formation of pillar[5, 6]arene-based supramolecular organogels. Org Chem Front 2019. [DOI: 10.1039/c9qo00717b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first two-component rim-to-rim pillar[6]arene-based supramolecular organogels were prepared. Shape complementarity was found to be an important determinant in the formation of such gels which also show shape-induced sorting in their formation.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Maya Hadar
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Eran Granot
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Fernando Patolsky
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yossi Zafrani
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
27
|
Ogoshi T, Kakuta T, Yamagishi T. Supramolekulare Pillar[
n
]aren‐Aggregate und ihre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805884] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- WPI Nano Life Science Institute (NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Tada‐aki Yamagishi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
28
|
Ogoshi T, Kakuta T, Yamagishi T. Applications of Pillar[
n
]arene‐Based Supramolecular Assemblies. Angew Chem Int Ed Engl 2018; 58:2197-2206. [DOI: 10.1002/anie.201805884] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- WPI Nano Life Science Institute (NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Tada‐aki Yamagishi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
29
|
Shamshoom C, Fong D, Li K, Kardelis V, Adronov A. Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS OMEGA 2018; 3:13935-13943. [PMID: 31458090 PMCID: PMC6645158 DOI: 10.1021/acsomega.8b02091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
Control of single-walled carbon nanotube dispersion properties is of substantial interest to the scientific community. In this work, we sought to investigate the effect of a macrocycle, pillar[5]arene, on the dispersion properties of a polymer-nanotube complex. Pillar[5]arenes are a class of electron-rich macrocyclic hosts capable of forming inclusion complexes with electron-poor guests, such as alkyl nitriles. A hydroxyl-functionalized pillar[5]arene derivative was coupled to the alkyl bromide side chains of a polyfluorene, which was then used to coat the surface of single-walled carbon nanotubes. Noncovalent functionalization of carbon nanotubes with the macrocycle-containing conjugated polymer significantly enhanced nanotube solubility, resulting in dark and concentrated nanotube dispersions (600 μg mL-1), as evidenced by UV-vis-NIR spectroscopy and thermogravimetric analysis. Differentiation of semiconducting and metallic single-walled carbon nanotube species was analyzed by a combination of UV-vis-NIR, Raman, and fluorescence spectroscopy. Raman spectroscopy confirmed that the concentrated nanotube dispersion produced by the macrocycle-containing polymer was due to well-exfoliated nanotubes, rather than bundle formation. The polymer-nanotube dispersion was investigated using 1H NMR spectroscopy, and it was found that host-guest chemistry between pillar[5]arene and 1,6-dicyanohexane occurred in the presence of the polymer-nanotube complex. Utilizing the host-guest capability of pillar[5]arene, the polymer-nanotube complex was incorporated into a supramolecular organogel.
Collapse
Affiliation(s)
- Christina Shamshoom
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Darryl Fong
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Kelvin Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Vladimir Kardelis
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| |
Collapse
|
30
|
Zafrani Y, Kaizerman D, Hadar M, Bigan N, Granot E, Ghosh M, Adler-Abramovich L, Patolsky F, Cohen Y. Pillararene-Based Two-Component Thixotropic Supramolecular Organogels: Complementarity and Multivalency as Prominent Motifs. Chemistry 2018; 24:15750-15755. [PMID: 29745993 DOI: 10.1002/chem.201801418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 02/05/2023]
Abstract
Rationally designed two-component supramolecular organogels based on multiple chemical interactions between percarboxylato- and peramino-pillararenes are described. Mixing low concentration solutions (<1 % w/v) of decacarboxylato-pillar[5]arene (1) with decaamino-pillar[5]arenes (2 b-d) affords, rapidly and without heating, organogels displaying an exceptional combination of properties. These supramolecular organogels, the characteristics of which are tunable, were found to be thixotropic and thermally stable, with Tgel values in some cases exceeding the boiling point of the embedded solvent. It is demonstrated that both structural complementarity and multivalency are important determinants in the gelation process of these attractive soft materials.
Collapse
Affiliation(s)
- Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Dana Kaizerman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Nitzan Bigan
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Granot
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Moumita Ghosh
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Fernando Patolsky
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|