1
|
Yang J, Wang Z, Huang J. Dynamics of Polymer Films on Polymer-Grafted Substrates: A Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22997-23006. [PMID: 39422278 DOI: 10.1021/acs.langmuir.4c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
For substrate-supported polymer films, the tails of adsorbed chains are generally assumed to play important roles in the propagation of the substrate's effect inside polymer films. The effects of the grafting density and the rigidity of substrate-grafted polymers, the simplest model for the adsorbed tails, on the diffusivity of film polymers are investigated by performing molecular dynamics simulations. An optimal grafting density σo, around the critical grafting density for the transition from "mushroom" to "brush", is found with the most pronounced suppression of diffusivity on the film polymers; i.e., the penetration of the film polymers into the grafting layer reaches the maximum. However, at high grafting density, the crowded and vertically stretched brush excludes the coil-like film polymers, and the suppression is thus reduced. At σo, with an increase in the rigidity of the grafted polymers, the suppression is increased quickly at low rigidity but slowly at high rigidity. The dynamic suppression is attributed to the combination of the conformation change from stretching at low rigidity to tilted orientation at high rigidity and decelerated mobility induced by the rigidity. The stretching conformation enhances, whereas the tilted conformation weakens the interpenetration between the grafted polymers and the film polymers. Our results reflect the importance of both conformational variation and interchain interaction in the interface region.
Collapse
Affiliation(s)
- Jie Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhunpeng Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianhua Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Kim JH, Rosenfeld J, Kim YC, Choe S, Composto RJ, Lee D, Dreyfus R. Polymer-Grafted, Gold Nanoparticle-Based Nano-Capsules as Reversible Colorimetric Tensile Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300361. [PMID: 37140078 DOI: 10.1002/smll.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Colloidal colorimetric microsensors enable the in-situ detection of mechanical strains within materials. Enhancing the sensitivity of these sensors to small scale deformation while enabling reversibility of the sensing capability would expand their utility in applications including biosensing and chemical sensing. In this study, we introduce the synthesis of colloidal colorimetric nano-sensors using a simple and readily scalable fabrication method. Colloidal nano sensors are prepared by emulsion-templated assembly of polymer-grafted gold nanoparticles (AuNP). To direct the adsorption of AuNP to the oil-water interface of emulsion droplets, AuNP (≈11nm) are functionalized with thiol-terminated polystyrene (PS, Mn = 11k). These PS-grafted gold nanoparticles are suspended in toluene and subsequently emulsified to form droplets with a diameter of ≈30µm. By evaporating the solvent of the oil-inwater emulsion, we form nanocapsules (AuNC) (diameter < 1µm) decorated by PS-grafted AuNP. To test mechanical sensing, the AuNC are embedded in an elastomer matrix. The addition of a plasticizer reduces the glass transition temperature of the PS brushes, and in turn imparts reversible deformability to the AuNC. The plasmonic peak of the AuNC shifts towards lower wavelengths upon application of uniaxial tensile tension, indicating increased inter-nanoparticle distance, and reverts back as the tension is released.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph Rosenfeld
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Ye Chan Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Sean Choe
- Complex Assemblies of Soft Matter Laboratory (COMPASS), UMI 3254, CNRS-Solvay-University of Pennsylvania, CRTB, Bristol, PA, 19007, USA
| | - Russell J Composto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Rémi Dreyfus
- Complex Assemblies of Soft Matter Laboratory (COMPASS), UMI 3254, CNRS-Solvay-University of Pennsylvania, CRTB, Bristol, PA, 19007, USA
- Laboratoire Nanotechnologies Nanosystemes (LN2), CNRS - Université de Sherbrooke, Quebec, J1K 0A5, Canada
| |
Collapse
|
3
|
Kim YC, Composto RJ, Winey KI. pH-Mediated Size-Selective Adsorption of Gold Nanoparticles on Diblock Copolymer Brushes. ACS NANO 2023; 17:9224-9234. [PMID: 37134256 DOI: 10.1021/acsnano.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Precise control of nanoparticles at interfaces can be achieved by designing stimuli-responsive surfaces that have tunable interactions with nanoparticles. In this study, we demonstrate that a polymer brush can selectively adsorb nanoparticles according to size by tuning the pH of the buffer solution. Specifically, we developed a facile polymer brush preparation method using a symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer deposited on a grafted polystyrene layer. This method is based on the assembly of a PS-b-P2VP thin film oriented with parallel lamellae that remains after exfoliation of the top PS-b-P2VP layer. We characterized the P2VP brush using X-ray reflectivity and atomic force microscopy. The buffer pH is used to tailor interactions between citrate-coated gold nanoparticles (AuNPs) and the top P2VP block that behaves like a polymer brush. At low pH (∼4.0) the P2VP brushes are strongly stretched and display a high density of attractive sites, whereas at neutral pH (∼6.5) the P2VP brushes are only slightly stretched and have fewer attractive sites. A quartz crystal microbalance with dissipation monitored the adsorption thermodynamics as a function of AuNP diameter (11 and 21 nm) and pH of the buffer. Neutral pH provides limited penetration depth for nanoparticles and promotes size selectivity for 11 nm AuNP adsorption. As a proof of concept, the P2VP brushes were exposed to various mixtures of large and small AuNPs to demonstrate selective capture of the smaller AuNPs. This study shows the potential of creating devices for nanoparticle size separations using pH-sensitive polymer brushes.
Collapse
Affiliation(s)
- Ye Chan Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Merrill JH, Li R, Roth CB. End-Tethered Chains Increase the Local Glass Transition Temperature of Matrix Chains by 45 K Next to Solid Substrates Independent of Chain Length. ACS Macro Lett 2023; 12:1-7. [PMID: 36516977 DOI: 10.1021/acsmacrolett.2c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The local glass transition temperature Tg of pyrene-labeled polystyrene (PS) chains intermixed with end-tethered PS chains grafted to a neutral silica substrate was measured by fluorescence spectroscopy. To isolate the impact of the grafted chains, the films were capped with bulk neat PS layers eliminating competing effects of the free surface. Results demonstrate that end-grafted chains strongly increase the local Tg of matrix chains by ≈45 K relative to bulk Tg, independent of grafted chain molecular weight from Mn = 8.6 to 212 kg/mol and chemical end-group, over a wide range of grafting densities σ = 0.003 to 0.33 chains/nm2 spanning the mushroom-to-brush transition regime. The tens-of-degree increase in local Tg resulting from immobilization of the chain ends by covalent bonding in this athermal system suggests a mechanism that substantially increases the local activation energy required for cooperative rearrangements.
Collapse
Affiliation(s)
- James H Merrill
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Ruoyu Li
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
5
|
Yan J, Xu J, Weng LT, Wang F, Wang X, Yuan H, Wang T, Tsui OKC. Glass Transition of the Surface Monolayer of Polystyrene Films with Different Film Thicknesses and Supporting Surfaces. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinsong Yan
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| | - Jianquan Xu
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Lu-Tao Weng
- Materials Characterization and Preparation Facility (GZ), Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou511400, Guangdong, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| | - Fengliang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Hailin Yuan
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| | - Tong Wang
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois60208-3120, United States
| | - Ophelia K. C. Tsui
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
- William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| |
Collapse
|
6
|
Anthi J, Kolivoška V, Holubová B, Vaisocherová-Lísalová H. Probing polymer brushes with electrochemical impedance spectroscopy: a mini review. Biomater Sci 2021; 9:7379-7391. [PMID: 34693954 DOI: 10.1039/d1bm01330k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymer brushes are frequently used as surface-tethered antifouling layers in biosensors to improve sensor surface-analyte recognition in the presence of abundant non-target molecules in complex biological samples by suppressing nonspecific interactions. However, because brushes are complex systems highly responsive to changes in their surrounding environment, studying their properties remains a challenge. Electrochemical impedance spectroscopy (EIS) is an emerging method in this context. In this mini review, we aim to elucidate the potential of EIS for investigating the physicochemical properties and structural aspects of polymer brushes. The application of EIS in brush-based biosensors is also discussed. Most common principles employed in these biosensors are presented, as well as interpretation of EIS data obtained in such setups. Overall, we demonstrate that the EIS-polymer brush pairing has a considerable potential for providing new insights into brush functionalities and designing highly sensitive and specific biosensors.
Collapse
Affiliation(s)
- Judita Anthi
- Institute of Physics of the CAS, Na Slovance 2, 182 21 Prague, Czech Republic. .,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | | |
Collapse
|
7
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Kawarazaki I, Hayashi M. Importance of interfacial mixed layer to determine the middle block Tg in lamellar structures of uncross-linked and cross-linked hard-b-soft-b-hard triblock copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Chung Y, Nam J, Son D, Lee H, Kim M, Paeng K. Direct Observations of Segmental Dynamics at the Polymer–Substrate Interface Enabled by Localizing Fluorescent Probes with Polymer Brushes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yura Chung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Nam
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dongwan Son
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Hyangseok Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Keewook Paeng
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Storey AN, Zhang W, Douglas JF, Starr FW. How Does Monomer Structure Affect the Interfacial Dynamics of Supported Ultrathin Polymer Films? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber N. Storey
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| | - Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| |
Collapse
|
11
|
Li L, Qiang Z, Chen X, Jin K, Wang M, Torkelson JM. Impact of bottlebrush chain architecture on
T
g
‐confinement and
fragility‐confinement
effects enabled by thermo‐cleavable bottlebrush polymers synthesized by radical coupling and atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lingqiao Li
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Zhe Qiang
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Xi Chen
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Kailong Jin
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Muzhou Wang
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - John M. Torkelson
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| |
Collapse
|
12
|
Lee S, Lee W, Yamada NL, Tanaka K, Kim JH, Lee H, Ryu DY. Instability of Polystyrene Film and Thermal Behaviors Mediated by Unfavorable Silicon Oxide Interlayer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seungjae Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Wooseop Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Norifumi L. Yamada
- Neutron Science Division, Institute for Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hoyeon Lee
- Neutron Science Center, Korea Atomic Energy Research Institute, 989 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
13
|
Li SJ, Qian HJ, Lu ZY. A simulation study on the glass transition behavior and relevant segmental dynamics in free-standing polymer nanocomposite films. SOFT MATTER 2019; 15:4476-4485. [PMID: 31111851 DOI: 10.1039/c9sm00267g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In polymer/nanoparticle composite (PNC) thin films, polymer chains experience strong confinement effects not only at the free surface area but also from nanoparticles (NPs). In this work, the influence of NP-polymer interaction and NP distribution on the polymer segmental dynamics and the glass transition behavior of PNC free-standing films are investigated through molecular dynamics simulations. We demonstrate that NPs will migrate to the film surface area and form an NP-concentrated layer when NP-polymer interactions are weak, while NPs are well dispersed in the bulk region when NP-polymer interactions are strong. In both cases, we find increases in the glass transition temperature Tg compared with the pure film without NPs, although with a different degree. The weakly interacting system has the same Tg as the pure bulk system without NPs. The NP layer formed at the surface area reduces both the mobility of the surface polymer beads and the mobility gradient in the film normal direction (MGFND), therefore resulting in an increase in the Tg which highlights the vital role of the mobile surface layer. In contrast, the NPs in the bulk region enlarge the MGFND. NPs have opposite influences on the polymer bead dynamic anisotropy when they interact weakly or strongly with polymers, weakened for the former and enhanced for the latter. These findings offer a clear picture of the segmental dynamics and glass transition behavior in free-standing PNC films with different NP-polymer interaction strengths. We hope these results will be helpful for the property design of related materials.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | | | | |
Collapse
|
14
|
Zuo B, Wang F, Hao Z, He H, Zhang S, Priestley RD, Wang X. Influence of the Interfacial Effect on Polymer Thin-Film Dynamics Scaled by the Distance of Chain Mobility Suppression by the Substrate. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengliang Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiwei Hao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haolin He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shasha Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
15
|
Mensink LI, Snoeijer JH, de Beer S. Wetting of Polymer Brushes by Polymeric Nanodroplets. Macromolecules 2019; 52:2015-2020. [PMID: 30894780 PMCID: PMC6416710 DOI: 10.1021/acs.macromol.8b02409] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/13/2019] [Indexed: 01/30/2023]
Abstract
End-anchoring polymers to a solid surface to form so-called polymer brushes is a versatile method to prepare robust functional coatings. We show, using molecular dynamics simulations, that these coatings display rich wetting behavior. Depending on the interaction between the brushes and the polymeric droplets as well as on the self-affinity of the brush, we can distinguish between three wetting states: mixing, complete wetting, and partial wetting. We find that transitions between these states are largely captured by enthalpic arguments, while deviations to these can be attributed to the negative excess interfacial entropy for the brush droplet system. Interestingly, we observe that the contact angle strongly increases when the softness of the brush is increased, which is opposite to the case of drops on soft elastomers. Hence, the Young to Neumann transition owing to softness is not universal but depends on the nature of the substrate.
Collapse
Affiliation(s)
- Liz I.
S. Mensink
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jacco H. Snoeijer
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
16
|
Thees MF, Roth CB. Unexpected Molecular Weight Dependence to the Physical Aging of Thin Polystyrene Films Present at Ultra‐High Molecular Weights. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Connie B. Roth
- Department of Physics Emory University Atlanta Georgia 30322
| |
Collapse
|
17
|
Christie D, Register RA, Priestley RD. Role of Chain Connectivity across an Interface on the Dynamics of a Nanostructured Block Copolymer. PHYSICAL REVIEW LETTERS 2018; 121:247801. [PMID: 30608727 DOI: 10.1103/physrevlett.121.247801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 06/09/2023]
Abstract
Fluorescence labeling enables component- and location-specific measurements of the glass transition temperature (T_{g}) in complex polymer systems. Here we characterize the T_{g} of fluorescently labeled poly(methyl methacrylate) homopolymers (PMMA-py) blended at low concentrations into an unlabeled lamellar poly(n-butyl methacrylate-b-methyl methacrylate) diblock copolymer (PBMA-PMMA). In this system, the PMMA-py homopolymer is sequestered within the PMMA domains of the diblock copolymer and subject to soft confinement by the domains of the lower-T_{g} PBMA block, which lowers the homopolymer T_{g} by ∼5 K beyond the contribution of segmental mixing. In contrast to the PMMA block in the diblock copolymer, the PMMA-py homopolymer is not covalently bound to the interdomain interface. A comparison of T_{g} for the homopolymers in the blends to T_{g} for diblock copolymers with equivalent labeled segment density profiles reveals that the homopolymer's T_{g} is consistently ∼10 K higher than for diblock segments at the same location within the domain structure, highlighting the dominant contribution of a covalent bond across the interface to the perturbation of the chain dynamics in the block copolymer.
Collapse
Affiliation(s)
- Dane Christie
- Department of Chemical and Biological Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| | - Richard A Register
- Department of Chemical and Biological Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|