1
|
Vislavath P, Billa S, S P, Bahadur J, Sudarshan K, Patro TU, Rath SK, Ratna D. Heterogeneous Coordination Environment and Unusual Self-Assembly of Ionic Aggregates in a Model Ionomeric Elastomer: Effect of Curative Systems. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prakash Vislavath
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Srikanth Billa
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Praveen S
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kathi Sudarshan
- Radio Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - T. Umasankar Patro
- Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra 411025, India
| | - Sangram K. Rath
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Debdatta Ratna
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| |
Collapse
|
2
|
Abstract
We present a general theory of ionic conductivity in polymeric materials consisting of percolated ionic pathways. Identifying two key length scales corresponding to inter-path permeation distance ξ and one-dimensional hopping conduction path length mλ, we have derived closed-form formulas in terms of the energy U required to unbind a conductive ion from its bound state and the partition ratio ξ/mλ between the three-dimensional permeation and one-dimensional hopping pathways. The results provide design strategies to significantly enhance ionic conductivity in single-ion conductors. For large barriers to dissociate an ion, corrections to the Arrhenius law are presented. The predicted dependence of ionic conductivity on the unbinding time is in agreement with results in the literature based on simulations and experiments. This theory is generally applicable to conductive systems where the two mechanisms of permeation and hopping occur concurrently.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
3
|
Ghiassinejad S, Mortensen K, Rostamitabar M, Malineni J, Fustin CA, van Ruymbeke E. Dynamics and Structure of Metallo-supramolecular Polymers Based on Short Telechelic Precursors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sina Ghiassinejad
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Matin Rostamitabar
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jagadeesh Malineni
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Evelyne van Ruymbeke
- Bio and Soft Matter Division, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Zhao J, Lei Q, He F, Zheng C, Liu Y, Zhao X, Yin J. Nonmonotonic Influence of Size of Quaternary Ammonium Countercations on Micromorphology, Polarization, and Electroresponse of Anionic Poly(ionic liquid)s. J Phys Chem B 2020; 124:2920-2929. [PMID: 32182069 DOI: 10.1021/acs.jpcb.9b11702] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The size influence of quaternary ammonium countercations in poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide][tetraalkylammonium] (P[STFSI][Nnnnn], n = 1, 2, and 3) poly(ionic liquid)s on dielectric polarization and the stimuli-responsive electrorheological effect is investigated by dielectric spectroscopy and rheology, and the microstructure-level understanding behind the influence is analyzed by Raman and X-ray scattering spectra. The size influence of quaternary ammonium cations is found to be nonmonotonic. The largest electrorheological effect accompanied by best polarization properties is demonstrated in P[STFSI][N2222]. Raman spectra and activation energy measurements demonstrate that the nonmonotonic influence originates from the fact that, compared to small N1111+ and large N3333+, intermediate N2222+ as countercations can contribute a higher mobile ion number and lower activation energy barrier of ion dissociation and motion. But the experimental values of activation energy are not consistent with theoretically calculated values by considering the ion pair electrostatic potential and elastic force contribution of the matrix. By X-ray scattering and diffraction characterizations, it is clarified that the nonmonotonic influence and the inconsistency of activation energy originate from the size influence of Nnnnn+ on the micromorphology of P[STFSI][Nnnnn]. Compared to the semicrystalline structure of P[STFSI][N1111] and the ionic aggregation structure of P[STFSI][N3333], the relatively uniform amorphous structure of P[STFSI][N2222] may be responsible for its lower activation energy barrier of ion motion. This study further provides insights into the design and preparation of future poly(ionic liquid)-based electrorheological materials by considering not only molecular structure but also micromorphology.
Collapse
Affiliation(s)
- Jia Zhao
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qi Lei
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fang He
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chen Zheng
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yang Liu
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China
| | - Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
5
|
Enokida JS, Hu W, Fang H, Morgan BF, Beyer FL, Winter HH, Coughlin EB. Modifying the Structure and Dynamics of Ionomers through Counterion Sterics. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua S. Enokida
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| | - Weiguo Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| | - Huagao Fang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| | - Brian F. Morgan
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Harford, Maryland 21005, United States
| | - Frederick L. Beyer
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Harford, Maryland 21005, United States
| | - H. Henning Winter
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| | - E. Bryan Coughlin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| |
Collapse
|
6
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
7
|
Zhao Q, Shen C, Halloran KP, Evans CM. Effect of Network Architecture and Linker Polarity on Ion Aggregation and Conductivity in Precise Polymerized Ionic Liquids. ACS Macro Lett 2019; 8:658-663. [PMID: 35619520 DOI: 10.1021/acsmacrolett.9b00293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Four polymerized ionic liquids (PILs) were systematically designed to study the effect of polymer architecture and linker polarity on ion aggregation and transport. Specifically, linear and network PILs with the same ammonium cations (Am) and bis(trifluoromethane)sulfonimide (TFSI) anions were prepared by step-growth polymerization, and polarity was tuned by incorporating two precise linkers, either polar tetra(ethylene oxide) (4EO) linker or nonpolar undecyl (C11) linker. The glass transition temperature (Tg) substantially increased with the nonpolar C11 linker or upon cross-linking to form a network. The low wave-vector (q) ion aggregation peak from wide-angle X-ray scattering (WAXS) was not observable in the linear 4EO PIL, while it was most pronounced in the network C11 PIL. The network C11 PIL exhibited the strongest decoupling, where the ionic conductivity at Tg is greater than 1 order of magnitude higher than the other PILs. This systematic comparison suggests that network structure and nonpolar linkers can promote both ion aggregation and ionic conductivity close to Tg.
Collapse
|
8
|
Ricarte RG, Tournilhac F, Leibler L. Phase Separation and Self-Assembly in Vitrimers: Hierarchical Morphology of Molten and Semicrystalline Polyethylene/Dioxaborolane Maleimide Systems. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02144] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ralm G. Ricarte
- Matière Molle et Chimie, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - François Tournilhac
- Matière Molle et Chimie, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Ludwik Leibler
- Gulliver, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|