1
|
Li Y, Wu W, Wang Y, Huang E, Jeong SY, Woo HY, Guo X, Feng K. Multi-Selenophene Incorporated Thiazole Imide-Based n-Type Polymers for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202316214. [PMID: 37996990 DOI: 10.1002/anie.202316214] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Developing polymers with high electrical conductivity (σ) after n-doping is a great challenge for the advance of the field of organic thermoelectrics (OTEs). Herein, we report a series of thiazole imide-based n-type polymers by gradually increasing selenophene content in polymeric backbone. Thanks to the strong intramolecular noncovalent N⋅⋅⋅S interaction and enhanced intermolecular Se⋅⋅⋅Se interaction, with the increase of selenophene content, the polymers show gradually lowered LUMOs, more planar backbone, and improved film crystallinity versus the selenophene-free analogue. Consequently, polymer PDTzSI-Se with the highest selenophene content achieves a champion σ of 164.0 S cm-1 and a power factor of 49.0 μW m-1 K-2 in the series when applied in OTEs after n-doping. The σ value is the highest one for n-type donor-acceptor OTE materials reported to date. Our work indicates that selenophene substitution is a powerful strategy for developing high-performance n-type OTE materials and selenophene incorporated thiazole imides offer an excellent platform in enabling n-type polymers with high backbone coplanarity, deep-lying LUMO and enhanced mobility/conductivity.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Pati SK, Patra D, Muduli S, Mishra S, Park S. Energy Storage Application of Conducting Polymers Featuring Dual Acceptors: Exploring Conjugation and Flexible Chain Length Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300689. [PMID: 36950756 DOI: 10.1002/smll.202300689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Solution-processable conducting polymers (CPs) are a compelling alternative to inorganic counterparts because of their potential for tuning chemical properties and creating flexible organic electronics. CPs, which typically comprise either only an electron donor (D) or its alternative combinations with an electron acceptor (A), exhibit charge transfer behavior between the units, resulting in an electrical conductivity suitable for utilization in electronic devices and for energy storage applications. However, the energy storage behavior of CPs with a sequence of electron acceptors (A-A), has rarely been investigated, despite their promising lower band gap and higher charge carrier mobility. Utilizing the aforesaid concept herein, four CPs featuring benzodithiophenedione (BDD), and diketopyrrolepyrrole (DPP) are synthesized. Among them, the BDDTH-DPPEH polymer exhibited the highest specific capacitance of 126.5 F g-1 at a current density of 0.5 A g-1 in an organic electrolyte over a wide potential window of -0.6-1.4 V. Notably, the supercapacitor properties of the polymeric electrode materials improved with increasing conjugation length by adding thiophene donor units and shortening the alkyl chain lengths. Furthermore, a symmetric supercapacitor device fabricated using BDDTH-DPPEH exhibited a high-power density of 4000 W kg-1 and an energy density of 31.66 Wh kg-1 .
Collapse
Affiliation(s)
- Subir K Pati
- Department of Nano Convergence Engineering, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dhananjaya Patra
- Department of Nano Convergence Engineering, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sunita Muduli
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Sungjune Park
- Department of Nano Convergence Engineering, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
4
|
Patra D, Park S. Solution Processable Benzotrithiophene (BTT)‐Based Organic Semiconductors: Recent Advances and Review. Macromol Rapid Commun 2022; 43:e2200473. [DOI: 10.1002/marc.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Dhananjaya Patra
- Department of Polymer‐Nano Science and Technology Jeonbuk National University Jeonju 54896 Korea
- Department of Nano Convergence Engineering Jeonbuk National University Jeonju 54896 Korea
| | - Sungjune Park
- Department of Polymer‐Nano Science and Technology Jeonbuk National University Jeonju 54896 Korea
- Department of Nano Convergence Engineering Jeonbuk National University Jeonju 54896 Korea
| |
Collapse
|
5
|
Wada R, Kaga S, Kawai Y, Futamura K, Murai T, Shibahara F. Synthesis and properties of thieno[2,3-d:5,4-d’]bisthiazoles and their oxidized derivatives: Thionyl chloride as a sulfurative ring-fusing reagent towards thiophene-based ring-fused heteroaromatic compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Luo N, Zhang G, Liu Z. Keep glowing and going: recent progress in diketopyrrolopyrrole synthesis towards organic optoelectronic materials. Org Chem Front 2021. [DOI: 10.1039/d1qo00613d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent progress in the syntheses of DPP derivatives is summarized as well as the structure–property relationships of the derivatives, including the syntheses of DPP cores, N-functionalization reactions, and π-extensions on and along the DPP cores.
Collapse
Affiliation(s)
- Nan Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
7
|
Patra D, Comí M, Zhang X, Kini GP, Udayakantha M, Kalin AJ, Banerjee S, Fang L, Guo X, Al-Hashimi M. Design, synthesis and characterization of fused bithiazole- and dithiophene-based low bandgap thienylenevinylene copolymers. Polym Chem 2021. [DOI: 10.1039/d1py00773d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electron-deficient thiazole moiety has high planarity and effective π–π stacking, which leads to the reduction in the energy levels, exhibiting promising charge carrier mobilities.
Collapse
Affiliation(s)
- Dhananjaya Patra
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Marc Comí
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Gururaj P. Kini
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Malsha Udayakantha
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3012, USA
| | - Alexander J. Kalin
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3012, USA
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3012, USA
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3012, USA
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| |
Collapse
|
8
|
Rasmussen SC, Uzelac EJ, Culver EW. Tricyclic-fused bithiophenes and related analogues: Important building blocks for conjugated materials. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond. Chem Rev 2019; 119:10977-11005. [DOI: 10.1021/acs.chemrev.9b00279] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|