1
|
Polanowski P, Jeszka JK, Matyjaszewski K. Crosslinking and Gelation of Polymer Brushes and Free Polymer Chains in a Confined Space during Controlled Radical Polymerization─A Computer Simulation Study. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
The Influence of Constraints on Gelation in a Controlling/Living Copolymerization Process. Int J Mol Sci 2023; 24:ijms24032701. [PMID: 36769024 PMCID: PMC9916906 DOI: 10.3390/ijms24032701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
We developed a simple model of the copolymerization process in the formation of crosslinked macromolecular systems. A living copolymerization was carried out for free chains, in bulk and in a slit, as well as for grafted chains in a slit. In addition, polymer 2D brushes were placed in a slit with initiator molecules attached to one of the confining walls. Coarse-grained chains were embedded in the vertices of a face-centered cubic lattice with the excluded volume interactions. The simulations of the copolymerization processes were performed using the Dynamic Lattice Liquid algorithm, a version of the Monte Carlo method. The influence of the initial initiator to cross-linker ratio, slit width and grafting on the polymerization and on the gelation was examined. It was also shown that the influence of a confining slit was rather small, while the grafting of chains affected the location of the gel pint significantly.
Collapse
|
3
|
Polymer brushes for friction control: Contributions of molecular simulations. Biointerphases 2023; 18:010801. [PMID: 36653299 DOI: 10.1116/6.0002310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
When polymer chains are grafted to solid surfaces at sufficiently high density, they form brushes that can modify the surface properties. In particular, polymer brushes are increasingly being used to reduce friction in water-lubricated systems close to the very low levels found in natural systems, such as synovial joints. New types of polymer brush are continually being developed to improve with lower friction and adhesion, as well as higher load-bearing capacities. To complement experimental studies, molecular simulations are increasingly being used to help to understand how polymer brushes reduce friction. In this paper, we review how molecular simulations of polymer brush friction have progressed from very simple coarse-grained models toward more detailed models that can capture the effects of brush topology and chemistry as well as electrostatic interactions for polyelectrolyte brushes. We pay particular attention to studies that have attempted to match experimental friction data of polymer brush bilayers to results obtained using molecular simulations. We also critically look at the remaining challenges and key limitations to overcome and propose future modifications that could potentially improve agreement with experimental studies, thus enabling molecular simulations to be used predictively to modify the brush structure for optimal friction reduction.
Collapse
|
4
|
Faria BF, Palyulin VV, Vishnyakov AM. Free energies of polymer brushes with mobile anchors in a good solvent calculated with the expanded ensemble method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Maurya MK, Ruscher C, Mukherji D, Singh MK. Computational indentation in highly cross-linked polymer networks. Phys Rev E 2022; 106:014501. [PMID: 35974630 DOI: 10.1103/physreve.106.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Indentation is a common experimental technique to study the mechanics of polymeric materials. The main advantage of using indentation is this provides a direct correlation between the microstructure and the small-scale mechanical response, which is otherwise difficult within the standard tensile testing. The majority of studies have investigated hydrogels, microgels, elastomers, and even soft biomaterials. However, a less investigated system is the indentation in highly cross-linked polymer (HCP) networks, where the complex network structure plays a key role in dictating their physical properties. In this work, we investigate the structure-property relationship in HCP networks using the computational indentation of a generic model. We establish a correlation between the local bond breaking, network rearrangement, and small-scale mechanics. The results are compared with the elastic-plastic deformation model. HCPs harden upon indentation.
Collapse
Affiliation(s)
- Manoj Kumar Maurya
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur UP 208016, India
| | - Céline Ruscher
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada BC V6T 1Z4
| | - Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, Canada BC V6T 1Z4
| | - Manjesh Kumar Singh
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur UP 208016, India
| |
Collapse
|
6
|
Luo Y, Pang AP, Zhu P, Wang D, Lu X. Demonstrating the Interfacial Polymer Thermal Transition from Coil-to-Globule to Coil-to-Stretch under Shear Flow Using SFG and MD Simulation. J Phys Chem Lett 2022; 13:1617-1627. [PMID: 35142518 DOI: 10.1021/acs.jpclett.1c03866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Revealing interfacial shear-induced structural responsiveness has long been an important topic in that most fluids in nature and human life are in motion and cause interesting boundary phenomena. It is amazing how the polymer chain conformation or local structural features at a boundary change under the effective shear condition. In this study, microfluidic-assisted sum frequency generation (SFG) vibrational spectroscopy and all-atom molecular dynamics (MD) simulation are combined to reveal that the shear flow can effectively block the so-called thermal coil-to-globule transition of the poly(N-isopropylacrylamide) (PNIPAM) brushes on the solid substrate, and the normal coil-to-globule transition transfers to a coil-to-stretch one under shear flow with increasing ambient temperature. Such findings are attributed to the balance between the shear flow and the molecular interaction with respect to the polymer chains and adjacent water molecules, thus demonstrating the significant effect of the shear flow on the structural and dynamic behaviors of the polymer chains at the boundaries from the molecular level.
Collapse
Affiliation(s)
- Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, P. R. China
| | - Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, P. R. China
| | - Peizhi Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin Province, P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, P. R. China
| |
Collapse
|
7
|
Smirnov MA, Tolmachev DA, Glova AD, Sokolova MP, Geydt PV, Lukasheva NV, Lyulin SV. Combined Use of Atomic Force Microscopy and Molecular Dynamics in the Study of Biopolymer Systems. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Slouf M, Krajenta J, Gajdosova V, Pawlak A. Macromechanical and micromechanical properties of polymers with reduced density of entanglements. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Prague 6 Czech Republic
| | - Justyna Krajenta
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Lodz Poland
| | - Veronika Gajdosova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Prague 6 Czech Republic
| | - Andrzej Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Lodz Poland
| |
Collapse
|
9
|
Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv Colloid Interface Sci 2020; 285:102280. [PMID: 33010575 DOI: 10.1016/j.cis.2020.102280] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Hydrogels have emerged as promising antimicrobial materials due to their unique three-dimensional structure, which provides sufficient capacity to accommodate various materials, including small molecules, polymers and particles. Coating substrates with antibacterial hydrogel layers has been recognized as an effective strategy to combat bacterial colonization. To prevent possible delamination of hydrogel coatings from substrates, it is crucial to attach hydrogel layers via stronger links, such as covalent bonds. To date, various surface chemical strategies have been developed to introduce hydrogel coatings on different substrates. In this review, we first give a brief introduction of the major strategies for designing antibacterial coatings. Then, we summarize the chemical methods used to fix the antibacterial hydrogel layer on the substrate, which include surface-initiated graft crosslinking polymerization, anchoring the hydrogel layer on the surface during crosslinking, and chemical crosslinking of layer-by-layer coating. The reaction mechanisms of each method and matched pretreatment strategies are systemically documented with the aim of introducing available protocols to researchers in related fields for designing hydrogel-coated antibacterial surfaces.
Collapse
|
10
|
|
11
|
Chen R, Wang Z, Li S, Du H. A novel degradation mechanism of the elastic modulus of wet polymer substrates under nanoindentation. SOFT MATTER 2020; 16:5009-5019. [PMID: 32436554 DOI: 10.1039/d0sm00645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrated that the formation and solidification of a continuous confined water film played a very important role in changing the elastic modulus of the wet polymer substrate in a nanoindentation process by a coarse-grained molecular dynamics simulation of this process. It was found that as the water content increased, the elastic modulus of the wet polymer substrate showed a non-monotonic change. Relative to the dry polymer substrate, the elastic modulus of the wet polymer first decreased. This is because the appearance of a confined water film caused the force between the polymer substrate and the indenter to change from repulsion to attraction. Subsequently, as the confined water film gradually solidified and then weakened, the elastic modulus of the wet polymer slowly increased and then rapidly increased due to a large number of interstitial water molecules gradually penetrating the polymer substrate. Therefore, it is unreasonable to explain the wet polymer degradation during nanoindentation only from the plasticization and anti-plasticization effects based on the hydrogen bond breaking and formation during stretching. The above-mentioned results will help to more comprehensively understand the degradation mechanism of the polymers' encounter with water, thus promoting further practical applications for polymers.
Collapse
Affiliation(s)
- Ruling Chen
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | |
Collapse
|
12
|
Liamas E, Connell SD, Ramakrishna SN, Sarkar A. Probing the frictional properties of soft materials at the nanoscale. NANOSCALE 2020; 12:2292-2308. [PMID: 31951242 DOI: 10.1039/c9nr07084b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The understanding of friction in soft materials is of increasing importance due to the demands of industries such as healthcare, biomedical, food and personal care, the incorporation of soft materials into technology, and in the study of interacting biological interfaces. Many of these processes occur at the nanoscale, but even at micrometer length scales there are fundamental aspects of tribology that remain poorly understood. With the advent of Friction Force Microscopy (FFM), there have been many fundamental insights into tribological phenomena at the atomic scale, such as 'stick-slip' and 'super-lubricity'. This review examines the growing field of soft tribology, the experimental aspects of FFM and its underlying theory. Moving to the nanoscale changes the contact mechanics which govern adhesive forces, which in turn play a pivotal role in friction, along with the deformation of the soft interface and dissipative phenomena. We examine recent progress and future prospects in soft nanotribology.
Collapse
Affiliation(s)
- Evangelos Liamas
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, UK
| | | | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| |
Collapse
|
13
|
Itagaki N, Kawaguchi D, Oda Y, Nemoto F, Yamada NL, Yamaguchi T, Tanaka K. Surface Effect on Frictional Properties for Thin Hydrogel Films of Poly(vinyl ether). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Fumiya Nemoto
- Neutron Science Laboratory, High Energy Accelerator Research Organization, Naka, Ibaraki 319-1106, Japan
| | - Norifumi L. Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, Naka, Ibaraki 319-1106, Japan
| | | | | |
Collapse
|
14
|
Abstract
A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E * ( q ) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E * ( q ) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion.
Collapse
|