1
|
An Z, Liu R, Dai Z, Liu J, Du J, Sheng Z, Liu H. In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride. Polymers (Basel) 2024; 16:3147. [PMID: 39599242 PMCID: PMC11597979 DOI: 10.3390/polym16223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the remarkable progress in the modification and application of polyvinyl chloride (PVC), developing processing aids for the induced crystallization of PVC and characterizing its interfacial layer remain challenges. Herein, we propose a new polymeric nucleating agent, polyamidea12-graft-styrene-maleic anhydride copolymer (PA12-g-SMA), which possesses high compatibility and crystallinity, effectively improving the crystallinity to 15.1%, the impact strength to 61.03 kJ/m2, and the degradation temperature of PVC to 267 °C through a single and straightforward processing step. Additionally, after the introduction of two different fluorescent sensors in PA12-g-SMA and PVC, the interfacial layer of the induced crystallization can be monitored in situ via a confocal laser scanning microscope (CLSM). This study highlights a rare strategy for significantly enhancing the physical properties of rigid PVC through simply adding a polymeric nucleating agent during processing, while also emphasizing the importance of visualizing the interfacial layer to understand various polymer crystallization processes.
Collapse
Affiliation(s)
- Zhihang An
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.A.); (Z.D.); (J.L.); (J.D.)
| | - Renping Liu
- Zhejiang Wazam New Materials Co., Ltd., Hangzhou 311121, China;
| | - Zhenhao Dai
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.A.); (Z.D.); (J.L.); (J.D.)
| | - Jiaping Liu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.A.); (Z.D.); (J.L.); (J.D.)
| | - Jiaying Du
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.A.); (Z.D.); (J.L.); (J.D.)
| | - Zhongyi Sheng
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.A.); (Z.D.); (J.L.); (J.D.)
| | - Heyang Liu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.A.); (Z.D.); (J.L.); (J.D.)
- College of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
Kumaki J. In Situ Real-Time Atomic Force Microscopy Observation of the Surface Mobility on Each Domain of a Polystyrene- b-poly(methyl methacrylate) Film at High Temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12974-12986. [PMID: 38857434 DOI: 10.1021/acs.langmuir.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The surface chain movements within the microdomains of a polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) and corresponding homopolymer films were observed via in situ real-time atomic force microscopy (AFM) at high temperatures and analyzed quantitatively using particle image velocimetry (PIV). At low temperatures, mobility within the PS microdomains resembled that within the PS homopolymer film, but movements in the PMMA microdomains were notably accelerated compared to the PMMA homopolymer. Conversely, at high temperatures, mobility within both PS and PMMA microdomains was considerably suppressed compared to their respective homopolymer films, likely owing to the fixed linkage of the block chains at the microdomain interface. This combination of real-time AFM observation and PIV analysis is an effective method for quantitatively evaluating surface chain mobility in real space.
Collapse
Affiliation(s)
- Jiro Kumaki
- Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
3
|
Putra R, Matsushita K, Ohnishi T, Masuda T. Operando Nanomechanical Mapping of Amorphous Silicon Thin Film Electrodes in All-Solid-State Lithium-Ion Battery Configuration during Electrochemical Lithiation and Delithiation. J Phys Chem Lett 2024; 15:490-498. [PMID: 38190614 PMCID: PMC10801689 DOI: 10.1021/acs.jpclett.3c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
An operando bimodal atomic force microscopy system was constructed to perform nanomechanical mapping of an amorphous Si thin film electrode deposited on a Li6.6La3Zr1.6Ta0.4O12 solid electrolyte sheet during electrochemical lithiation/delithiation. The evolution of Young's modulus maps of the Si electrode was successfully tracked as a function of apparent Li content x in lithium silicide (LixSi) simultaneously with real-time surface topography observation. At the initial stage of lithiation, the average modulus steeply decreased due to the generation of LixSi from intrinsic Si, followed by a moderate modulus reduction until the electrode capacity reached 3300 mAh g-1 (Li content x = 3.46). In the following delithiation, the gradual recovery of the average modulus of LixSi was observed up to 1467 mAh g-1 (Li content x = 1.54) at which delithiation stopped due to the significant volume change induced by phase transformation of LixSi.
Collapse
Affiliation(s)
- Ridwan
P. Putra
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research
Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Kyosuke Matsushita
- Research
Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Tsuyoshi Ohnishi
- Research
Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Takuya Masuda
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research
Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
Jin F, Huang Z, Zheng Y, Sun C, Kafle N, Ma J, Pan P, Miyoshi T. Impact of Entanglement on Folding of Semicrystalline Polymer during Crystallization. ACS Macro Lett 2023; 12:1138-1143. [PMID: 37503873 DOI: 10.1021/acsmacrolett.3c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Upon cooling, semicrystalline polymers experience crystallization and form alternatively stacked layers consisting of thin crystal lamellae and amorphous ones. The unique morphology, crystallinity, and crystallization kinetics highly depend on the molecular weight. Therefore, it is deduced that entanglement impacts crystallization kinetics, as well as hierarchically crystalline structures. However, the impact of entanglement on folded crystalline chains has not been well understood due to experimental difficulties. In this work, chain-folding structures for seven 13C CH3 labeled poly(l-lactic acid)s with various molecular weights (Mws) were investigated by 13C-13C double quantum NMR spectroscopy. As a result, chain-folding events were categorized into three different Mw regimes: (i) The lowest Mw sample (2K g/mol) adopts an extended chain conformation (folding number, n = 0) (regime I); (ii) Intermediate Mw ones possess mixtures of non- and once-folded structures, and the once-folded fraction suddenly increases above the entanglement length (Me), up to Mw = 45K g/mol (regime II); (iii) The high Mw ones (Mw > 45K g/mol) adopt the highest chance for an adjacent re-entry structure with n = 1.0 in the well-developed entangled network (regime III). It was suggested that entanglement induces folding of the semicrystalline polymer.
Collapse
Affiliation(s)
- Fan Jin
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Zheng Huang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ying Zheng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chenxuan Sun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Navin Kafle
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiayang Ma
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Toshikazu Miyoshi
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
5
|
Yamazaki S, Harada M, Watanabe Y, Lang R, Kato T, Haba O, Fukushima K, Kumaki J. Crystallization of Star-Shaped Poly(l-lactide)s with Arm Chains Aligned in the Same Direction in Two-Dimensional Crystals in a Langmuir Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5486-5494. [PMID: 37026866 DOI: 10.1021/acs.langmuir.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Polylactide (PLA) crystallizes to form extended-chain crystals in a Langmuir monolayer because crystallization is accelerated on the water surface. This is a unique situation where chain packing can be analyzed by simply measuring the lamellar thickness. Herein, star-shaped poly(l-lactide)s (PLLAs) with 2-12 arms were synthesized through the polymerization of l-lactide with various polyols as initiators, and their crystallization behavior in a monolayer was studied via atomic force microscopy. The PLLAs comprising 2-4 arms crystallized with all arms aligned in the same direction and being folded at the central polyol unit. Meanwhile, the PLLAs comprising 6 and 12 arms crystallized with both halves of the arms extended from the center to the opposite directions, most likely due to the steric hindrance of the crowded arms. Considering that the PLLAs crystallized from a once-formed condensed amorphous state during compression, they have a strong tendency to crystallize with the arms aligned in the same direction. The crystallization rate of star-shaped PLAs is known to reduce compared with that of a linear PLA even if the number of arms is as few as 2. This should be closely related to the unique crystallization behavior of the star-shaped PLLAs with the arms aligned in the same direction.
Collapse
Affiliation(s)
- Shota Yamazaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Mahoko Harada
- Department of Organic Materials Science, Faculty of Engineering and Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuya Watanabe
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rongjian Lang
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Osamu Haba
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), PRESTO, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
6
|
Wang Z, Duan R, Pang X, Wu R, Guo B, Xu J. Critical Size and Formation Mechanism of Secondary Nuclei in Melt-Crystallized Polylactide Stereocomplex Crystals. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084Beijing, China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Rongling Wu
- Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, Pennsylvania17033, United States
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084Beijing, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084Beijing, China
| |
Collapse
|
7
|
Koike K, Kumaki J. Chain Movements at the Topmost Surface of Poly(methyl methacrylate) and Polystyrene Films Directly Evaluated by In Situ High-Temperature Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13707-13719. [PMID: 36318939 PMCID: PMC9671121 DOI: 10.1021/acs.langmuir.2c01788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
The surfaces of polymeric materials are thermodynamically unstable, and the glass-transition temperature (Tg) is significantly lower than that in the bulk material. However, the mobility of the chains at the top of the surface has never been directly evaluated. In this study, the movements of the topmost chains of poly(methyl methacrylate) (PMMA) and polystyrene (PS) bulk films were observed in situ at high temperatures with atomic force microscopy in tapping mode. PMMA and PS chains started moving at ∼97 and ∼50 °C, respectively, which were slightly and significantly below the values of their bulk Tg (PMMA, 108 °C; PS, 104 °C), respectively. The activation energies of the apparent diffusion constants of PMMA and PS, derived by particle image velocimetry analysis, were 193 and 151 kJ mol-1, respectively, and reasonable for the glass transition. Movements of isolated PMMA chains deposited on a PMMA film by the Langmuir-Blodgett technique were also observed and confirmed to be essentially the same as those on the PMMA film surface.
Collapse
Affiliation(s)
- Kouki Koike
- Department of Organic Materials Science,
Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science,
Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
8
|
Bornani K, Mendez NF, Altorbaq AS, Müller AJ, Lin Y, Qu EZ, Zhang K, Kumar SK, Schadler LS. In Situ Atomic Force Microscopy Tracking of Nanoparticle Migration in Semicrystalline Polymers. ACS Macro Lett 2022; 11:818-824. [PMID: 35675165 DOI: 10.1021/acsmacrolett.1c00778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present in situ tracking of silica nanoparticle (NP) migration from a poly(ethylene oxide) (PEO) melt into interlamellar region using in situ atomic force microscopy (AFM). Our results confirm the previous hypothesis that NPs migrate into the interlamellar regions at crystallization growth rates smaller than a critical value under isothermal conditions. Under these slow crystallization conditions, bare silica NPs are rejected as defects by the growing crystal of PEO, and the in situ imaging on the large (50 nm) NPs helps track the migration into the amorphous zones. We extend this AFM technique to estimate lamellar growth rates that correlate with spherulite growth rates determined by polarized light optical microscopy (PLOM) but at smaller undercoolings than are typical for PLOM.
Collapse
Affiliation(s)
- Kamlesh Bornani
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Nicholas F Mendez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Abdullah S Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain.,Ikerbasque, Basque Science Foundation, 48009 Bilbao, Spain
| | - Yueqian Lin
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215300, China
| | - Eric Zhonghang Qu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215300, China
| | - Kai Zhang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215300, China
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Linda S Schadler
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
9
|
Wu T, Chandran S, Zhang Y, Zheng T, Pfohl T, Xu J, Reiter G. Primary Nucleation in Metastable Solutions of Poly(3-hexylthiophene). Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyu Wu
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | | | - Yao Zhang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Tianze Zheng
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Thomas Pfohl
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Murphy JG, Raybin JG, Sibener SJ. Correlating polymer structure, dynamics, and function with atomic force microscopy. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia G. Murphy
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Jonathan G. Raybin
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Steven J. Sibener
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| |
Collapse
|
11
|
Zhang YF, Chen X, Yu XS, Chen JX, Hu MQ, Zheng BY, Liu YX, Yang S, Chen EQ. Folded Chain Lamellae of Dynamic Helical Poly(phenylacetylene) in the Hexagonal Columnar Phase. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan-Fang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Xu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiao-Song Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Jia-Xin Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Ming-Qiu Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Bo-Yuan Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Yi-Xin Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Surface Crystal Nucleation and Growth in Poly (ε-caprolactone): Atomic Force Microscopy Combined with Fast Scanning Chip Calorimetry. Polymers (Basel) 2021; 13:polym13122008. [PMID: 34205303 PMCID: PMC8234991 DOI: 10.3390/polym13122008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
By using an atomic force microscope (AFM) coupled to a fast scanning chip calorimeter (FSC), AFM-tip induced crystal nucleation/crystallization in poly (ε-caprolactone) (PCL) has been studied at low melt-supercooling, that is, at a temperature typically not assessable for melt-crystallization studies. Nanogram-sized PCL was placed on the active/heatable area of the FSC chip, melted, and then rapidly cooled to 330 K, which is 13 K below the equilibrium melting temperature. Subsequent isothermal crystallization at this temperature was initiated by a soft-tapping AFM-tip nucleation event. Crystallization starting at such surface nucleus led to formation of a single spherulite within the FSC sample, as concluded from the radial symmetry of the observed morphology. The observed growth rate in the sub-micron thin FSC sample, nucleated at its surface, was found being much higher than in the case of bulk crystallization, emphasizing a different growth mechanism. Moreover, distinct banding/ring-like structures are observed, with the band period being less than 1 µm. After crystallization, the sample was melted for gaining information about the achieved crystallinity and the temperature range of melting, both being similar compared to much slower bulk crystallization at the same temperature but for a much longer time.
Collapse
|
13
|
Abstract
Nucleation plays a vital role in polymer crystallization, in which chain connectivity and thus the multiple length and time scales make crystal nucleation of polymer chains an interesting but complex subject. Though the topic has been intensively studied in the past decades, there are still many open questions to answer. The final properties of semicrystalline polymer materials are affected by all of the following: the starting melt, paths of nucleation, organization of lamellar crystals and evolution of the final crystalline structures. In this viewpoint, we attempt to discuss some of the remaining open questions and corresponding concepts: non-equilibrated polymers, self-induced nucleation, microscopic kinetics of different processes, metastability of polymer lamellar crystals, hierarchical order and cooperativity involved in nucleation, etc. Addressing these open questions through a combination of novel concepts, new theories and advanced approaches provides a deeper understanding of the multifaceted process of crystal nucleation of polymers.
Collapse
|
14
|
Darabi E, Itskov M. A generalized tube model of rubber elasticity. SOFT MATTER 2021; 17:1675-1684. [PMID: 33367440 DOI: 10.1039/d0sm02055a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present paper, a new type of micro-mechanically motivated chain network model for rubber-like materials is proposed. The model captures topological constraints of polymer network chains, in particular, entanglements. The model demonstrates how the local molecular packing constraints modify under deformation and shows the impact of these changes on the macroscopic elasticity of the material. To this end, we combine concepts of a confining tube and a slip-link (reptation) model. In these models, entanglements of polymer chains play an important role. The nature of entanglements is discussed, and relationships governing entanglements are formulated in terms of molecular physics. In the context of nonlinear elasticity, we apply a non-affine concept which captures the liquid-like behavior of polymer networks at smaller scales in a more realistic way. Model predictions show good agreement with experimental results from uniaxial and biaxial tension tests.
Collapse
Affiliation(s)
- Ehsan Darabi
- Department of Continuum Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany.
| | - Mikhail Itskov
- Department of Continuum Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany.
| |
Collapse
|
15
|
Zhang S, Wang Z, Guo B, Xu J. Secondary nucleation in polymer crystallization: A kinetic view. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shujing Zhang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|
16
|
Ono Y, Kumaki J. In Situ AFM Observation of Folded‐Chain Crystallization of a Low‐Molecular‐Weight Isotactic Poly(methyl methacrylate) in a Langmuir Monolayer at the Molecular Level. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuki Ono
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University Yonezawa Yamagata 992–8510 Japan
| | - Jiro Kumaki
- Department of Organic Materials Science Graduate School of Organic Materials Science Yamagata University Yonezawa Yamagata 992–8510 Japan
| |
Collapse
|
17
|
Parent LR, Gnanasekaran K, Korpanty J, Gianneschi NC. 100th Anniversary of Macromolecular Science Viewpoint: Polymeric Materials by In Situ Liquid-Phase Transmission Electron Microscopy. ACS Macro Lett 2021; 10:14-38. [PMID: 35548998 DOI: 10.1021/acsmacrolett.0c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A century ago, Hermann Staudinger proposed the macromolecular theory of polymers, and now, as we enter the second century of polymer science, we face a different set of opportunities and challenges for the development of functional soft matter. Indeed, many fundamental questions remain open, relating to physical structures and mechanisms of phase transformations at the molecular and nanoscale. In this Viewpoint, we describe efforts to develop a dynamic, in situ microscopy tool suited to the study of polymeric materials at the nanoscale that allows for direct observation of discrete structures and processes in solution, as a complement to light, neutron, and X-ray scattering methods. Liquid-phase transmission electron microscopy (LPTEM) is a nascent in situ imaging technique for characterizing and examining solvated nanomaterials in real time. Though still under development, LPTEM has been shown to be capable of several modes of imaging: (1) imaging static solvated materials analogous to cryo-TEM, (2) videography of nanomaterials in motion, (3) observing solutions or nanomaterials undergoing physical and chemical transformations, including synthesis, assembly, and phase transitions, and (4) observing electron beam-induced chemical-materials processes. Herein, we describe opportunities and limitations of LPTEM for polymer science. We review the basic experimental platform of LPTEM and describe the origin of electron beam effects that go hand in hand with the imaging process. These electron beam effects cause perturbation and damage to the sample and solvent that can manifest as artefacts in images and videos. We describe sample-specific experimental guidelines and outline approaches to mitigate, characterize, and quantify beam damaging effects. Altogether, we seek to provide an overview of this nascent field in the context of its potential to contribute to the advancement of polymer science.
Collapse
Affiliation(s)
- Lucas R. Parent
- Innovation Partnership Building, The University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
18
|
Shen T, Li C, Strachan A. Novel Mode of Noncrystallographic Branching in the Initial Stages of Polymer Fibril Growth. PHYSICAL REVIEW LETTERS 2020; 125:247801. [PMID: 33412039 DOI: 10.1103/physrevlett.125.247801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Spherulites are the most ubiquitous of polycrystalline microstructure of polymers; they develop under a wide range of conditions by the subsequent branching of crystalline lamella that results in an overall spherical shape. Despite significant efforts over decades, the mechanisms behind branching remain unclear. Molecular dynamics simulations in polyethylene reveal the molecular-level origin of noncrystallographic branching and the initial formation of fibrils. We find that the growth of crystalline lamella by reeling in and folding of polymer chains causes surprisingly large local deformation which, in turn, aligns the chains in the neighboring undercooled liquid. Thus, subsidiary grains nucleate with preferred orientations resulting in fibril growth with branching at small angles, consistent with those observed experimentally.
Collapse
Affiliation(s)
- Tongtong Shen
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chunyu Li
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
19
|
Watanabe Y, Ichinohe H, Kumaki J. In situ AFM Observation of the Movements of Isolated Isotactic Poly(methyl methacrylate) Chains in a Precursor Film of an Oligo(methyl methacrylate) Droplet Spreading on Mica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12327-12335. [PMID: 32965125 DOI: 10.1021/acs.langmuir.0c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy (AFM) is a powerful tool to observe polymer chains at the molecular level. In this study, we show that the movements of isolated linear polymer chains in a precursor film of a droplet of an oligomer spreading on a substrate could be visualized in situ at the molecular level by AFM for the first time. The system was an isotactic poly(methyl methacrylate) (it-PMMA) solubilized in an oligo(MMA) matrix (it-PMMA/oligo(MMA) = 1/10,000 w/w) spreading on mica under high humidity. Because of the limited resolution of the AFM instrument, condensed linear polymer chains could not be visualized, but a small amount of it-PMMA chains that were solubilized as isolated chains in the oligo(MMA) matrix could be visualized in the precursor film, the contrast of which came from a large difference in glass transition temperature (Tg) of it-PMMA and oligo(MMA). The it-PMMA chains in the precursor film spread in the radial direction of the droplet with vigorously changing chain conformations. The spreading rate of it-PMMA chains under 72% relative humidity was ∼1/30 of the spreading rate of the oligo(MMA) matrix, which was estimated based on the decrease in the volume of the macroscopic droplet. The spreading of the it-PMMA chains and droplet strongly depended on humidity and was suppressed with the decrease in humidity, most likely because of the increase in friction with the substrate. The difference in the spreading rate of it-PMMA and oligo(MMA) further increased under low humidity. The dynamic molecular information of a precursor film by AFM should help to elucidate the wetting dynamics on a substrate.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Hayato Ichinohe
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
20
|
Nakagawa S, Yoshie N. Periodic Surface Pattern Induced by Crystallization of Polymer Brushes in Solvents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505 Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505 Japan
| |
Collapse
|
21
|
Sasahara Y, Miyake Y, Kumaki J. Preparation of a Si(111) Atomically Flat Substrate via Wet Etching and Evaluation as an AFM Substrate for Observations of Isolated Chains, Crystals, and Crystallization of Isotactic Poly(methyl methacrylate) at the Molecular Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7494-7504. [PMID: 32484676 DOI: 10.1021/acs.langmuir.0c01098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To observe a polymer chain deposited on a substrate by atomic force microscopy (AFM) at the molecular level, the substrate should be atomically flat and stable under laboratory conditions and adsorb polymer chains firmly. Therefore, substrates used under laboratory conditions are practically limited to mica, highly ordered pyrolytic graphite, and atomically stepped sapphire, and polymers observed by AFM at the molecular level are also limited. A silicon wafer is frequently used as a substrate for AFM observation for somewhat macroscopic observations, but the surface of the silicon wafer is too rough to observe polymer chains deposited on it at the molecular level. In this study, we prepared an atomically stepped Si(111) substrate via wet etching in NH4F and evaluated it as an AFM substrate. The Si(111) substrate was stable as an AFM substrate, and isolated poly(methyl methacrylate) (it-PMMA) chains and a crystalline monolayer deposited on the substrate were observed by AFM at the molecular level. An it-PMMA amorphous monolayer deposited on mica crystallized under high humidity, but that on the Si(111) substrate did not because of the difference in the surface nature and the crystal structure of the substrates. The Si(111) substrate was hydrophobic, and the it-PMMA monolayers could be deposited as a multilayer, which could not be formed on hydrophilic mica. The crystallization behavior of an it-PMMA amorphous multilayer and an amorphous/crystalline mixed multilayer on the Si(111) substrate was also evaluated.
Collapse
Affiliation(s)
- Yuki Sasahara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuya Miyake
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
22
|
Iwashima K, Yamamoto T, Tezuka Y, Kumaki J. Self-Assembly of Linear and Cyclic Polylactide Stereoblock Copolymers with a Parallel and Antiparallel Chain Arrangement Distinguishing Their Directions on a Water Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6216-6221. [PMID: 32407100 DOI: 10.1021/acs.langmuir.0c00769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of molecules into a well-ordered structure is one of the most important processes in fabricating sophisticated materials. Here, we show that polymer chains can be self-assembled, distinguishing their direction (parallel or antiparallel), and could be a new useful scaffold for self-assembly in a controlled direction. The system that was used was a stereocomplex (SC) formation of linear and cyclic polylactide (PLA) stereoblock copolymers with a parallel and antiparallel chain arrangement in a Langmuir monolayer. The linear and cyclic stereoblock copolymers with a parallel arrangement formed a well-ordered lamellar SC in the first and second layers upon compression, but the linear and cyclic stereoblock copolymers with an antiparallel arrangement did not form a first-layer lamella and instead formed only the second-layer lamella. These results were only rationally explained by assuming that the enantiomeric PLA chains selectively assembled in a parallel direction, not in an antiparallel direction, in the SC. A simple polymer chain could be self-assembled, distinguishing the direction without a specific interaction group in it.
Collapse
Affiliation(s)
- Kenta Iwashima
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
23
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
24
|
Acevedo-Cartagena DE, Zhu J, Kocun M, Nonnenmann SS, Hayward RC. Tuning Metastability of Poly(3-hexyl thiophene) Solutions to Enable in Situ Atomic Force Microscopy Imaging of Surface Nucleation. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Marta Kocun
- Oxford Instruments Asylum Research, 6310 Hollister Avenue, Santa Barbara, California 93117 United States
| | | | | |
Collapse
|
25
|
Zhang S, Han J, Gao Y, Guo B, Reiter G, Xu J. Determination of the Critical Size of Secondary Nuclei on the Lateral Growth Front of Lamellar Polymer Crystals. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shujing Zhang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Jiarui Han
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Yang Gao
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Günter Reiter
- Institute of Physics and Freiburg Materials Research Center, Albert-Ludwig-University of Freiburg, 79104 Freiburg, Germany
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
26
|
Li XY, Ding JJ, Liu YP, Tian XY. A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals. IUCRJ 2019; 6:968-983. [PMID: 31576229 PMCID: PMC6760438 DOI: 10.1107/s2052252519011035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
As is well known, polymers commonly form lamellar crystals, and these assemble further into lamellar stacks and spherulites during quiescent crystallization. Fifty years ago, Vonk and Kortleve constructed the classical small-angle X-ray scattering theory (SAXS) for a lamellar system, in which it was assumed that the lamellar stack had an infinite lateral size [Vonk & Kortleve (1967 ▸), Kolloid Z. Z. Polym. 220, 19-24]. Under this assumption, only crystal planes satisfying the Bragg condition can form strong scattering, and the scattering from the lamellar stack arises from the difference between the scattering intensities in the amorphous and crystalline layers, induced by the incident X-ray beam. This assumption is now deemed unreasonable. In a real polymer spherulite, the lamellar crystal commonly has dimensions of only a few hundred nanometres. At such a limited lateral size, lamellar stacks in a broad orientation have similar scattering, so interference between these lamellar stacks must be considered. Scattering from lamellar stacks parallel to the incident X-ray beam also needs to be considered when total reflection occurs. In this study, various scattering contributions from lamellar stacks in a spherulite are determined. It is found that, for a limited lateral size, the scattering induced by the incident X-ray beam is not the main origin of SAXS. It forms double peaks, which are not observed in real scattering because of destructive interference between the lamellar stacks. The scattering induced by the evanescent wave is the main origin. It can form a similar interference pattern to that observed in a real SAXS measurement: a Guinier region in the small-q range, a signal region in the intermediate-q range and a Porod region in the high-q range. It is estimated that, to avoid destructive interference, the lateral size needs to be greater than 11 µm, which cannot be satisfied in a real lamellar system. Therefore, SAXS in a real polymer system arises largely from the scattering induced by the evanescent wave. Evidence for the existence of the evanescent wave was identified in the scattering of isotactic polypropyl-ene. This study corrects a long-term misunderstanding of SAXS in a polymer lamellar system.
Collapse
Affiliation(s)
- Xiang-Yang Li
- Institute of Applied Technology, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, People’s Republic of China
| | - Jian-Jun Ding
- Institute of Applied Technology, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, People’s Republic of China
| | - Yan-Ping Liu
- National Center for International Research of Micro–Nano Molding Technology and Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Xing-You Tian
- Institute of Applied Technology, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, People’s Republic of China
| |
Collapse
|
27
|
Wang S, Yuan S, Wang K, Chen W, Yamada K, Barkley D, Koga T, Hong YL, Miyoshi T. Intramolecular and Intermolecular Packing in Polymer Crystallization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shijun Wang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Shichen Yuan
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kun Wang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Wei Chen
- National Synchrotron Radiation Lab, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, P. R. China
| | - Koji Yamada
- Advanced Processing Technology Unit, Research Center, Toyobo Co., Ltd. 2-1-1 Katata, Otsu, Shiga 520-0292, Japan
| | | | | | - You-lee Hong
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Toshikazu Miyoshi
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
28
|
Korolkov VV, Summerfield A, Murphy A, Amabilino DB, Watanabe K, Taniguchi T, Beton PH. Ultra-high resolution imaging of thin films and single strands of polythiophene using atomic force microscopy. Nat Commun 2019; 10:1537. [PMID: 30948725 PMCID: PMC6449331 DOI: 10.1038/s41467-019-09571-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/19/2019] [Indexed: 11/09/2022] Open
Abstract
Real-space images of polymers with sub-molecular resolution could provide valuable insights into the relationship between morphology and functionality of polymer optoelectronic devices, but their acquisition is problematic due to perceived limitations in atomic force microscopy (AFM). We show that individual thiophene units and the lattice of semicrystalline spin-coated films of polythiophenes (PTs) may be resolved using AFM under ambient conditions through the low-amplitude (≤ 1 nm) excitation of higher eigenmodes of a cantilever. PT strands are adsorbed on hexagonal boron nitride near-parallel to the surface in islands with lateral dimensions ~10 nm. On the surface of a spin-coated PT thin film, in which the thiophene groups are perpendicular to the interface, we resolve terminal CH3-groups in a square arrangement with a lattice constant 0.55 nm from which we can identify abrupt boundaries and also regions with more slowly varying disorder, which allow comparison with proposed models of PT domains.
Collapse
Affiliation(s)
- Vladimir V Korolkov
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Alex Summerfield
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alanna Murphy
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David B Amabilino
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Peter H Beton
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
29
|
Affiliation(s)
- Bart Kahr
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY 10003, USA.
| | - Michael D Ward
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY 10003, USA.
| |
Collapse
|