1
|
Sun YS, Jian YQ, Yang ST, Wang HF, Junisu BA, Chen CY, Lin JM. Epitaxial Growth of Surface Perforations on Parallel Cylinders in Terraced Films of Block Copolymer/Homopolymer Blends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7680-7691. [PMID: 38551605 PMCID: PMC11008238 DOI: 10.1021/acs.langmuir.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Due to incommensurability between initial thickness and interdomain distance, thermal annealing inevitably produces relief surface terraces (islands and holes) of various morphologies in thin films of block copolymers. We have demonstrated three kinds of surface terraces in blend films: polygrain terraces with diffuse edges, polygrain terraces with step edges, and pseudo-monograin terraces with island coarsening. The three morphologies were obtained by three different thermal histories, respectively. The thermal histories were imposed on blend films, which were prepared by mixing a homopolystyrene (hPS, 6.1 kg/mol) with a weakly segregated, symmetry polystyrene-block poly(methyl methacrylate) (PS-b-PMMA, 42 kg/mol) followed by spin coating. At a given weight-fraction ratio of PS-b-PMMA/hPS = 75/25, the interior of the blend films forms parallel cylinders. Nevertheless, the surface of the blend films is always dominated by a skin layer of perforations, which epitaxially grow on top of parallel cylinders. By oxygen plasma etching at various time intervals to probe interior nanodomains, the epitaxial relationship between surface perforations and parallel cylinders has been identified by a scanning electron microscope.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Yi-Qing Jian
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Shin-Tung Yang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Hsiao-Fang Wang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Belda Amelia Junisu
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Chun-Yu Chen
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
2
|
Van Guyse JFR, Bernhard Y, Podevyn A, Hoogenboom R. Non-activated Esters as Reactive Handles in Direct Post-Polymerization Modification. Angew Chem Int Ed Engl 2023; 62:e202303841. [PMID: 37335931 DOI: 10.1002/anie.202303841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Université de Lorraine, UMR CNRS 7053 L2CM, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Chen K, Chen CY, Chen HL, Komaki R, Kawakami N, Isono T, Satoh T, Hung DY, Liu YL. Self-Assembly Behavior of Sugar-Based Block Copolymers in the Complex Phase Window Modulated by Molecular Architecture and Configuration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kai Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yu Chen
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ryoya Komaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Nao Kawakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Du-Yuan Hung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Sub-10 nm Thin Film Feature Sizes of Chemically Tailored Poly(styrene-block-methyl methacrylate) with Randomly Distributed Fluorine Units. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Nishimura T, Katsuhara S, Lee C, Ree BJ, Borsali R, Yamamoto T, Tajima K, Satoh T, Isono T. Fabrication of Ultrafine, Highly Ordered Nanostructures Using Carbohydrate-Inorganic Hybrid Block Copolymers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1653. [PMID: 35630875 PMCID: PMC9144075 DOI: 10.3390/nano12101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022]
Abstract
Block copolymers (BCPs) have garnered considerable interest due to their ability to form microphase-separated structures suitable for nanofabrication. For these applications, it is critical to achieve both sufficient etch selectivity and a small domain size. To meet both requirements concurrently, we propose the use of oligosaccharide and oligodimethylsiloxane as hydrophilic and etch-resistant hydrophobic inorganic blocks, respectively, to build up a novel BCP system, i.e., carbohydrate-inorganic hybrid BCP. The carbohydrate-inorganic hybrid BCPs were synthesized via a click reaction between oligodimethylsiloxane with an azido group at each chain end and propargyl-functionalized maltooligosaccharide (consisting of one, two, and three glucose units). In the bulk state, small-angle X-ray scattering revealed that these BCPs microphase separated into gyroid, asymmetric lamellar, and symmetric lamellar structures with domain-spacing ranging from 5.0 to 5.9 nm depending on the volume fraction. Additionally, we investigated microphase-separated structures in the thin film state and discovered that the BCP with the most asymmetric composition formed an ultrafine and highly oriented gyroid structure as well as in the bulk state. After reactive ion etching, the gyroid thin film was transformed into a nanoporous-structured gyroid SiO2 material, demonstrating the material's promising potential as nanotemplates.
Collapse
Affiliation(s)
- Taiki Nishimura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (T.N.); (S.K.); (C.L.)
| | - Satoshi Katsuhara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (T.N.); (S.K.); (C.L.)
| | - Chaehun Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (T.N.); (S.K.); (C.L.)
| | - Brian J. Ree
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (B.J.R.); (T.Y.); (K.T.)
| | - Redouane Borsali
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, F-38000 Grenoble, France;
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (B.J.R.); (T.Y.); (K.T.)
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (B.J.R.); (T.Y.); (K.T.)
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (B.J.R.); (T.Y.); (K.T.)
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (B.J.R.); (T.Y.); (K.T.)
| |
Collapse
|
6
|
Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films. Polym J 2022. [DOI: 10.1038/s41428-021-00604-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Zhang Z, Ding S, Zhou Y, Ye Z, Wang R, Du B, Xu J. Influence of Salt Doping on the Entropy‐Driven Lower Disorder‐to‐Order Transition Behavior of Poly(ethylene oxide)‐
b
‐Poly(4‐vinylpyridine). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ze‐Kun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shi‐Peng Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yi‐Ting Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ze Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rui‐Yang Wang
- Department of Chemistry, Division of Advanced Materials Science Pohang University of Science and Technology Pohang 790‐784 Korea
| | - Bin‐Yang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
8
|
Seo M, Kim H, Lee E, Li S. Ordered Microdomain Structures in Saccharide-Polystyrene-Saccharide Hybrid Conjugates. Biomacromolecules 2021; 22:4659-4668. [PMID: 34613707 DOI: 10.1021/acs.biomac.1c00931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid conjugates consist of synthetic polymers and naturally occurring saccharides, and are capable of microphase separation at small molecular weights to form ordered domain structures. In this study, we synthesize ABA triblock-like conjugates with polystyrene as the synthetic mid-segment and either trisaccharide maltotriose (MT) or disaccharide maltose (Mal) as the end unit. Hybrid conjugates of varying compositions are prepared by a combination of atom transfer radical polymerization and a click reaction, and their morphologies are examined by small-angle X-ray scattering and transmission electron microscopy. The MT-containing conjugates are found to form well-ordered domain structures with a sub-10 nm periodicity, and morphology transition from cylinders to spheres to disordered spheres is observed with decreasing saccharide weight fraction. The Mal-containing conjugates also show microphase separation. However, the observed domain morphologies lack regular packing due to the close proximity of polymer glass transition temperature and order-disorder transition temperature. The saccharide-containing conjugates are also found to undergo an irreversible morphology change at high temperatures, attributed to saccharide dehydration-induced pentablock-like structure formation.
Collapse
Affiliation(s)
- Minji Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hayeon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Ding SP, Zhang ZK, Ye Z, Du BY, Xu JT. Fabrication of High χ-Low N Block Copolymers with Thermally Stable Sub-5 nm Microdomains Using Polyzwitterion as a Constituent Block. ACS Macro Lett 2021; 10:1321-1325. [PMID: 35549030 DOI: 10.1021/acsmacrolett.1c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we used zwitterionic poly(4-vinylpyridine) propane-1-sulfonate (PVPS) as a constituent block to construct high χ-low N block copolymers (BCPs) with different neutral polymers as the other block, including polystyrene (PS), poly(ethylene oxide) (PEO), and poly(l-lactide) (PLLA). Lamellar structures with sub-5 nm microdomains were observed in all three types of BCPs. Due to the tendency of self-aggregation induced by electrostatic interaction in polyzwitterion, the Flory-Huggins parameters (χ) between PVPS and most neutral polymers are relatively high, which provides a facile and efficient way to fabricate high χ-low N BCPs. In addition, the dimension of the sub-5 nm structures formed in PVPS-containing BCPs showed high thermal stability with a small fluctuation (±0.1 nm) of domain spacings upon heating.
Collapse
Affiliation(s)
- Shi-Peng Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze-Kun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin-Yang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Moreno S, Boye S, Ajeilat HGA, Michen S, Tietze S, Voit B, Lederer A, Temme A, Appelhans D. Multivalent Protein-Loaded pH-Stable Polymersomes: First Step toward Protein Targeted Therapeutics. Macromol Biosci 2021; 21:e2100102. [PMID: 34355506 DOI: 10.1002/mabi.202100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.
Collapse
Affiliation(s)
- Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | | | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Stefanie Tietze
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany.,Faculty of Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany.,Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany, National Center for Tumor Diseases (NCT), Fetscherstraße 74, Dresden, 01307, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| |
Collapse
|
11
|
Narumi A, Rachi R, Yamazaki H, Kawaguchi S, Kikuchi M, Konno H, Osaki T, Okamoto Y, Shen X, Kakuchi T, Kataoka H, Nomoto A, Yoshimura T, Yano S. Maltotriose-Chlorin e6 Conjugate Linked via Tetraethyleneglycol as an Advanced Photosensitizer for Photodynamic Therapy. Synthesis and Antitumor Activities against Canine and Mouse Mammary Carcinoma Cells. ACS OMEGA 2021; 6:7023-7033. [PMID: 33748616 PMCID: PMC7970547 DOI: 10.1021/acsomega.0c06316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
Glycoconjugated chlorins represent a promising class of compounds that meet the requirements for the third-generation photosensitizer (PS) for photodynamic therapy (PDT). We have focused on the use of glucose (Glc) to improve the performance of the PS based on the Warburg effect-a phenomenon where tumors consume higher Glc levels than normal cells. However, as a matter of fact, Glc-conjugation has a poor efficacy in hydrophilic modification; thus, the resultant PS is not suitable for intravenous injection. In this study, a Glc-based oligosaccharide, such as maltotriose (Mal3), is conjugated to chlorin e6 (Ce6). The conjugation is assisted by two additional molecular tools, such as propargyl amine and a tetraethylene glycol (TEG) derivative. This route produced the target Mal3-Ce6 conjugate linked via the TEG spacer (Mal3-TEG-Ce6), which shows the required photoabsorption properties in the physiological media. The PDT test using canine mammary carcinoma (SNP) cells suggested that the antitumor activity of Mal3-TEG-Ce6 is extremely high. Furthermore, in vitro tests against mouse mammary carcinoma (EMT6) cells have been demonstrated, providing insights into the photocytotoxicity, subcellular localization, and analysis of cell death and reactive oxygen species (ROS) generation for the PDT system with Mal3-TEG-Ce6. Both apoptosis and necrosis of the EMT6 cells occur by ROS that is generated via the photochemical reaction between Mal3-TEG-Ce6 and molecular oxygen. Consequently, Mal3-TEG-Ce6 is shown to be a PS showing the currently desired properties.
Collapse
Affiliation(s)
- Atsushi Narumi
- Graduate
School of Organic Materials Science, Yamagata
University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Rioko Rachi
- Graduate
School of Organic Materials Science, Yamagata
University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Hiromi Yamazaki
- Graduate
School of Organic Materials Science, Yamagata
University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Seigou Kawaguchi
- Graduate
School of Organic Materials Science, Yamagata
University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Moriya Kikuchi
- Faculty
of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Hiroyuki Konno
- Graduate
School of Science and Engineering, Yamagata
University, Yonezawa, Yamagata 992-8510, Japan
| | - Tomohiro Osaki
- Joint
Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshiharu Okamoto
- Joint
Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Xiande Shen
- Research
Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Toyoji Kakuchi
- Research
Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Hiromi Kataoka
- Department
of Gastroenterology and Metabolism, Nagoya
City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Akihiro Nomoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomokazu Yoshimura
- KYOUSEI
Science Center for Life and Nature, Nara
Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Shigenobu Yano
- KYOUSEI
Science Center for Life and Nature, Nara
Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| |
Collapse
|
12
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
13
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021; 60:8710-8716. [DOI: 10.1002/anie.202016384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
14
|
Pinto-Gómez C, Pérez-Murano F, Bausells J, Villanueva LG, Fernández-Regúlez M. Directed Self-Assembly of Block Copolymers for the Fabrication of Functional Devices. Polymers (Basel) 2020; 12:E2432. [PMID: 33096908 PMCID: PMC7589734 DOI: 10.3390/polym12102432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/17/2023] Open
Abstract
Directed self-assembly of block copolymers is a bottom-up approach to nanofabrication that has attracted high interest in recent years due to its inherent simplicity, high throughput, low cost and potential for sub-10 nm resolution. In this paper, we review the main principles of directed self-assembly of block copolymers and give a brief overview of some of the most extended applications. We present a novel fabrication route based on the introduction of directed self-assembly of block copolymers as a patterning option for the fabrication of nanoelectromechanical systems. As a proof of concept, we demonstrate the fabrication of suspended silicon membranes clamped by dense arrays of single-crystal silicon nanowires of sub-10 nm diameter. Resulting devices can be further developed for building up high-sensitive mass sensors based on nanomechanical resonators.
Collapse
Affiliation(s)
- Christian Pinto-Gómez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain; (C.P.-G.); (F.P.-M.); (J.B.)
| | - Francesc Pérez-Murano
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain; (C.P.-G.); (F.P.-M.); (J.B.)
| | - Joan Bausells
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain; (C.P.-G.); (F.P.-M.); (J.B.)
| | - Luis Guillermo Villanueva
- Advanced NEMS Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| | - Marta Fernández-Regúlez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain; (C.P.-G.); (F.P.-M.); (J.B.)
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
15
|
Ree BJ, Satoh Y, Isono T, Satoh T. Bicyclic Topology Transforms Self-Assembled Nanostructures in Block Copolymer Thin Films. NANO LETTERS 2020; 20:6520-6525. [PMID: 32787170 DOI: 10.1021/acs.nanolett.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ongoing efforts in materials science have resulted in linear block copolymer systems that generate nanostructures via the phase separation of immiscible blocks; however, such systems are limited with regard to their domain miniaturization and lack of orientation control. We overcome these limitations through the bicyclic topological alteration of a block copolymer system. Grazing incidence X-ray scattering analysis of nanoscale polymer films revealed that bicyclic topologies achieve 51.3-72.8% reductions in domain spacing when compared against their linear analogue, which is more effective than the theoretical predictions for conventional cyclic topologies. Moreover, bicyclic topologies achieve unidirectional orientation and a morphological transformation between lamellar and cylindrical domains with high structural integrity. When the near-equivalent volume fraction between the blocks is considered, the formation of hexagonally packed cylindrical domains is particularly noteworthy. Bicyclic topological alteration is therefore a powerful strategy for developing advanced nanostructured materials for microelectronics, displays, and membranes.
Collapse
Affiliation(s)
- Brian J Ree
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yusuke Satoh
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
16
|
Isono T, Nakahira S, Hsieh HC, Katsuhara S, Mamiya H, Yamamoto T, Chen WC, Borsali R, Tajima K, Satoh T. Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Hui-Ching Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Hiroaki Mamiya
- National Institute for Materials Science, Tsukuba 305-0047, Japan
| | | | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
17
|
Kim J, Jung HY, Park MJ. End-Group Chemistry and Junction Chemistry in Polymer Science: Past, Present, and Future. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02293] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jihoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Ha Young Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| |
Collapse
|
18
|
Ito D, Kimura Y, Takenaka M, Ouchi M, Terashima T. Single-chain crosslinked polymers via the transesterification of folded polymers: from efficient synthesis to crystallinity control. Polym Chem 2020. [DOI: 10.1039/d0py00758g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report efficient synthetic systems of single-chain crosslinked polymers via the intramolecular transesterification of folded random copolymers in organic media and the unique crystallization behavior of their crosslinked polymers.
Collapse
Affiliation(s)
- Daiki Ito
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshihiko Kimura
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Mikihito Takenaka
- Institute for Chemical Research
- Kyoto University
- Uji
- Japan
- RIKEN Spring-8 Center
| | - Makoto Ouchi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Takaya Terashima
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
19
|
Qiu H, Yang ZN, Ling J. Facile Synthesis of Functional Poly(ε-caprolactone) via Janus Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2242-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Yoshida K, Yamamoto T, Tajima K, Isono T, Satoh T. Installing a functional group into the inactive ω-chain end of PMMA and PS-b-PMMA by terminal-selective transesterification. Polym Chem 2019. [DOI: 10.1039/c9py00315k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various functional groups were incorporated into the inherently inactive ω-chain end of polymethacrylate-based polymers by terminal-selective transesterification.
Collapse
Affiliation(s)
- Kohei Yoshida
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering
- Hokkaido University
- Hokkaido 080-8628
- Japan
| | - Takuya Yamamoto
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering
- Hokkaido University
- Hokkaido 080-8628
- Japan
| | - Kenji Tajima
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering
- Hokkaido University
- Hokkaido 080-8628
- Japan
| | - Takuya Isono
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering
- Hokkaido University
- Hokkaido 080-8628
- Japan
| | - Toshifumi Satoh
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering
- Hokkaido University
- Hokkaido 080-8628
- Japan
| |
Collapse
|