1
|
Li L, Xu Z, Li W. Emergence of Connected Binary Spherical Structures from the Self-assembly of an AB 2C Four-Arm Star Terpolymer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Zhang X, Li W. Periodic Patchy Spheres Self-Assembled by A mBCA n' Multiblock Terpolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4407-4414. [PMID: 35352945 DOI: 10.1021/acs.langmuir.2c00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have designed AmBCAn' multiblock terpolymers and studied their self-assembly using self-consistent field theory, aiming to generate the periodically arranged patchy spheres and thus to clarify the regulation mechanism of the number of patches. A number of two-dimensional phase diagrams are constructed for three typical architectures A2BCA2', A2BCA3', and A3BCA2'. Four kinds of stable patchy spheres with the number of patches as 2 (S2), 4 (S4), 5 (S5), and 6 (S6) are obtained. These phases follow a common transition sequence of S2 → S4 → S5 → S6 along with the increasing of the volume fraction of C-block (fC), which forms the core sphere patched with B-domains. Moreover, the S6 phase exhibits the widest stability window, while S5 has the narrowest one. The increased arms of A'-blocks in A2BCA3' architecture deflect the phase boundaries toward large fC and accordingly expand the regions of these patchy spheres due to the amplified effect of spontaneous curvature. In contrast, the increased arms of A-blocks in A3BCA2' remarkably expands the window of S6 but narrows those of the other patchy spheres, which is mainly caused by increased packing frustration resulting from the reduced extension of the more divided A-blocks. The widest window of the S6 phase reaches ΔfC ∼ 0.13, which is readily accessed by experiment. Our work not only demonstrates a self-assembly strategy to engineer the patchy spheres, but also sheds light on the regulation mechanism of the patchy number.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Zhao H, Xu Z, Lin J. Hierarchically Chiral Nanostructures Self-Assembled from Nanoparticle Tethered Block Copolymers. Macromol Rapid Commun 2022; 43:e2100855. [PMID: 35247288 DOI: 10.1002/marc.202100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Indexed: 11/07/2022]
Abstract
Chiral nanostructures of nanoparticle assemblies have attracted tremendous interest for their fascinating functional properties. Herein, through theoretical simulations, we show that nanoparticle tethered block copolymers can self-assemble into hierarchically chiral nanostructures. Two-fold helices are formed in the hierarchically chiral nanostructures: the diblock copolymers form helical supercylinders while the nanoparticles arrange into chiral assemblies wrapped around the helical supercylinders. The hierarchically chiral nanostructures can be formed in a large parameter window. Circular dichroism calculations demonstrate that the coexistence of polymeric helices and chiral nanoparticle assemblies improves the chiroptical activity. These findings can provide guidelines for designing hierarchically ordered chiral nanostructures with advanced functional properties. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongmeng Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Yoon H, Ahn S, Dong Q, Choi C, Kim E, Li W, Kim JK. Multidomain Helical Nanostructure by A 1BA 2C Tetrablock Terpolymer Self-Assembly. ACS Macro Lett 2021; 10:1119-1124. [PMID: 35549084 DOI: 10.1021/acsmacrolett.1c00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among many possible nanostructures in block copolymer self-assembly, helical nanostructures are particularly important because of potential applications for heterogeneous catalysts and plasmonic materials. In this work, we investigated, via small-angle X-ray scattering and transmission electron microscopy, the morphology of a polystyrene-block-polyisoprene-block-polystyrene-block-poly(2-vinylpyridine) (S1IS2V) tetrablock terpolymer. Very interestingly, when the volume fraction of each block was 0.685, 0.125, 0.060, and 0.130, respectively, a multidomain double-stranded helical nanostructure (MH2) was formed: P2VP chains became a core helix, and PI chains formed double-stranded helices surrounding the core helix. Core and double-stranded helices are connected by short PS2 chains, and PS1 chains become the matrix. The experimentally observed morphology is in good agreement with the prediction by self-consistent field theory. We believe that this multidomain helical structure will be pave the way to the creation of multifunctional helical structures for various applications such as metamaterials.
Collapse
Affiliation(s)
- Hyeongkeon Yoon
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seonghyeon Ahn
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Qingshu Dong
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Chungryong Choi
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Eunyoung Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Weihua Li
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
5
|
Chen K, Wang F, Liu M, Wang X. Tunable helical structures formed by blending
ABC
triblock copolymers and C homopolymers in nanopores. POLYM INT 2021. [DOI: 10.1002/pi.6253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ka Chen
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Feng Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Meijiao Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
6
|
Dong Q, Li W. Effect of Molecular Asymmetry on the Formation of Asymmetric Nanostructures in ABC-Type Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Xie Q, Qiang Y, Zhang G, Li W. Emergence and Stability of Janus-Like Superstructures in an ABCA Linear Tetrablock Copolymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiong Xie
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guojie Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Ren Y, Müller M. Impact of Molecular Architecture on Defect Removal in Lamella-Forming Triblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongzhi Ren
- Key Lab of In-Fiber Integrated Optics, Ministry of Education, 150001 Harbin, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Liu M, Chen K, Li W, Wang X. Tunable helical structures formed by ABC triblock copolymers under cylindrical confinement. Phys Chem Chem Phys 2019; 21:26333-26341. [PMID: 31782439 DOI: 10.1039/c9cp04978a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Block copolymers confined in nanopores provide unique achiral systems for the formation of helical structures. With AB diblock copolymers, stable single and double helical structures are observed. Aiming to obtain more different helical structures, we replace the AB diblock copolymer with linear ABC triblock copolymers. We speculate that a core-shell superstructure is formed within the nanopore, which is composed of a C-core cylinder wrapped by B-helices within the A-shell. Accordingly, the pore surface is set to be most attractive to the majority A-block and a typical set of interaction parameters is chosen as χACN ≪ χABN = χBCN = 80 to generate the frustrated interfaces. Furthermore, the volume fraction of B-block is fixed as fB = 0.1 to form helical cylinders. A number of helical structures with strands ranging from 1 to 5 are predicted by self-consistent field theory, and in general, the number of strands decreases as the volume fraction of C-block fC increases in a given nanopore. More surprisingly, the variation of helical strand in the confined system has an opposite trend to that in the bulk, which mainly results from the constraint of the cylindrical confinement on the change of the curvature between the outer A-layer and the inner B/C-superdomain. Our work demonstrates a facile way to fabricate different helical superstructures.
Collapse
Affiliation(s)
- Meijiao Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | |
Collapse
|