1
|
Su L, Fang C, Luo H. Functionalized montmorillonite/epoxy resin nanocomposites with enhanced thermal and mechanical properties. RSC Adv 2024; 14:31251-31258. [PMID: 39355330 PMCID: PMC11443195 DOI: 10.1039/d4ra03125c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
The poor interaction between the hydrophilic montmorillonite and hydrophobic epoxy resins leads to agglomeration of montmorillonite within epoxy resins, which finally results in poor macro properties of the epoxy resin nanocomposites. Although silane modification can improve the hydrophobicity of montmorillonite surface, the hydrolysis and condensation of silane lead to locking effect in the interlayer structure of functionalized montmorillonite. The effect of the functionalized montmorillonite on the properties of the epoxy resin remains unclear. Herein, we present multi technique approach to thoroughly evaluate the macro properties of the montmorillonite/epoxy resin nanocomposites, including dynamic mechanical thermal, thermo-mechanical, dielectric, water absorption and subsequently evaluate the molecular factors governing these characteristics. Importantly, the storage modulus has been enhanced by 44%, from 2416 MPa for pure epoxy resin to 2416 MPa for nanocomposites with 5.0 wt% functionalized montmorillonite. Our analysis reveals the increase of thermal stability and glass-transition temperature, as well as a reduction of the coefficient of thermal expansion with the addition of functionalized montmorillonite. Additionally, functionalized montmorillonite leads to decreased water absorption. This research aims to offer guidance for the development of high-performance montmorillonite/polymer nanocomposites, potentially opening up new applications for montmorillonite in polymer nanocomposites.
Collapse
Affiliation(s)
- Linna Su
- Shenzhen Polytechnic University Shenzhen 518055 China
| | - Changfa Fang
- Shenzhen Polytechnic University Shenzhen 518055 China
| | - Huanzhong Luo
- Shenzhen Polytechnic University Shenzhen 518055 China
| |
Collapse
|
2
|
Fan J, Zhou Y, Ding S, Pang Y, Zeng X, Guo S, Xu J, Ren L, Sun R, Zeng X. Thermally Conductive Elastomer Composites with High Toughness, Softness, and Resilience Enabled by Regulating Interfacial Structure and Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402265. [PMID: 38757418 DOI: 10.1002/smll.202402265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The emerging applications of thermally conductive elastomer composites in modern electronic devices for heat dissipation require them to maintain both high toughness and resilience under thermomechanical stresses. However, such a combination of thermal conductivity and desired mechanical characteristics is extremely challenging to achieve in elastomer composites. Here this long-standing mismatch is resolved via regulating interfacial structure and dynamics response. This regulation is realized both by tuning the molecular weight of the dangling chains in the polymer networks and by silane grafting of the fillers, thereby creating a broad dynamic-gradient interfacial region comprising of entanglements. These entanglements can provide the slipping topological constraint that allows for tension equalization between and along the chains, while also tightening into rigid knots to prevent chain disentanglement upon stretching. Combined with ultrahigh loading of aluminum-fillers (90 wt%), this design provides a low Young's modulus (350.0 kPa), high fracture toughness (831.5 J m-2), excellent resilience (79%) and enhanced thermal conductivity (3.20 W m-1 k-1). This work presents a generalizable preparation strategy toward engineering soft, tough, and resilient high-filled elastomer composites, suitable for complex environments, such as automotive electronics, and wearable devices.
Collapse
Affiliation(s)
- Jianfeng Fan
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Yu Zhou
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shengchang Ding
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yunsong Pang
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiangliang Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianbin Xu
- Department of Electronics Engineering, the Chinese University of Hong Kong Shatin, N.T., Hong Kong, 999077, China
| | - Linlin Ren
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoliang Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
3
|
Huang LZ, Song K, Yang CW, Han JJ, Yang TT, Xu JZ, Sun GA, Li ZM, Liu D. Elongation induced demonstration of the fraction dependent filler network structures in silicone rubber: An in situ SAXS study. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Callau M, Fajolles C, Leroy J, Verneuil E, Guenoun P. A silicone-based slippery polymer coating with humidity–dependent nanoscale topography. J Colloid Interface Sci 2023; 642:724-735. [PMID: 37037078 DOI: 10.1016/j.jcis.2023.03.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
HYPOTHESIS Slippery Omniphobic Covalently Attached Liquids (SOCAL) have been proposed for making omnirepellent thin films of self-assembled dimethylsiloxane polymer brushes grafted from silica surfaces. Smooth and flat at very small scale, these fluid surfaces could exhibit a more complex multiscale structure though showing very weak contact angle hysteresis (less than 5°). EXPERIMENT In this work, coatings were deposited on glass surfaces from an acidic dimethoxydimethylsilane solution under carefully controlled relative humidity. Ellipsometry mapping was used to analyze the surface structuration with nanometric thickness sensitivity. The sliding properties were determined using a drop shape analyzer with a tilting device, and chemical analyses of the coatings were performed using on-surface techniques (XPS, ATR-FTIR spectroscopy). FINDINGS Coated materials possessed an unexpected surface structure with multiscale semispherical-like features, which surprisingly, did not increase the contact angle hysteresis. A careful study of some parameters of the coating process and the related evolution of the surface properties allowed us to propose a new model of the chemical organization of the polymer to support this remarkable liquid-like behavior. These structures are made of end-grafted strongly adsorbed Guiselin brushes with humidity-dependent thickness: the higher the humidity, the thinner and the more slippery the coating.
Collapse
|
5
|
Rationalizing the interfacial layer in polymer nanocomposites: Correlation between enthalpy and dielectric relaxation. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Ahmadi M, Chen Z. Molecular Dynamics Investigation of Wettability Alteration of Quartz Surface under Thermal Recovery Processes. Molecules 2023; 28:molecules28031162. [PMID: 36770829 PMCID: PMC9919717 DOI: 10.3390/molecules28031162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
One of the primary methods for bitumen and heavy oil recovery is a steam-assisted gravity drainage (SAGD) process. However, the mechanisms related to wettability alteration under the SAGD process still need to be fully understood. In this study, we used MD simulation to evaluate the wettability alteration under a steam injection process for bitumen and heavy oil recovery. Various oil droplets with different asphaltene contents were considered to determine the effect of an asphaltene content on the adsorption of the oil droplets onto quartz surfaces and wettability alteration. Based on the MD simulation outputs, the higher the asphaltene content, the higher the adsorption energy between the bitumen/heavy oil and quartz surfaces due to coulombic interactions. Additionally, the quartz surfaces became more oil-wet at temperatures well beyond the water boiling temperature; however, they were extremely water-wet at ambient conditions. The results of this work provide in-depth information regarding wettability alteration during in situ thermal processes for bitumen and heavy oil recovery. Furthermore, they provide helpful information for optimizing the in situ thermal processes for successful operations.
Collapse
|
7
|
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface. ACS NANO 2022; 16:13612-13656. [PMID: 36107156 DOI: 10.1021/acsnano.2c07404] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposite dielectrics possess exceptional electric properties that are absent in the pristine dielectric polymers. The matrix/particle interface in polymer nanocomposite dielectrics is suggested to play decisive roles on the bulk material performance. Herein, we present a critical overview of recent research advances and important insights in understanding the matrix/particle interfacial characteristics in polymer nanocomposite dielectrics. The primary experimental strategies and state-of-the-art characterization techniques for resolving the local property-structure correlation of the matrix/particle interface are dissected in depth, with a focus on the characterization capabilities of each strategy or technique that other approaches cannot compete with. Limitations to each of the experimental strategy are evaluated as well. In the last section of this Review, we summarize and compare the three experimental strategies from multiple aspects and point out their advantages and disadvantages, critical issues, and possible experimental schemes to be established. Finally, the authors' personal viewpoints regarding the challenges of the existing experimental strategies are presented, and potential directions for the interface study are proposed for future research.
Collapse
Affiliation(s)
- Shaojie Wang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Luo
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajie Liang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinliang He
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Li
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Sakib N, Koh YP, Simon SL. The absolute heat capacity of polymer grafted nanoparticles using fast scanning calorimetry*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nazam Sakib
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Yung P. Koh
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - Sindee L. Simon
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
9
|
Molecular mobility, crystallization and melt-memory investigation of molar mass effects on linear and hydroxyl-terminated Poly(ε-caprolactone). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Surface Chemistry of Nanohybrids with Fumed Silica Functionalized by Polydimethylsiloxane/Dimethyl Carbonate Studied Using 1H, 13C, and 29Si Solid-State NMR Spectroscopy. Molecules 2021; 26:molecules26195974. [PMID: 34641517 PMCID: PMC8512228 DOI: 10.3390/molecules26195974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
The investigation of molecular interactions between a silica surface and organic/inorganic polymers is crucial for deeper understanding of the dominant mechanisms of surface functionalization. In this work, attachment of various depolymerized polydimethylsiloxanes (PDMS) of different chain lengths, affected by dimethyl carbonate (DMC), to silica nanoparticles pretreated at different temperatures has been studied using 29Si, 1H, and 13C solid-state NMR spectroscopy. The results show that grafting of different modifier blends onto a preheated silica surface depends strongly on the specific surface area (SSA) linked to the silica nanoparticle size distributions affecting all textural characteristics. The pretreatment at 400 °C results in a greater degree of the modification of (i) A-150 (SSA = 150 m2/g) by PDMS-10/DMC and PDMS-1000/DMC blends; (ii) A-200 by PDMS-10/DMC and PDMS-100/DMC blends; and (iii) A-300 by PDMS-100/DMC and PDMS-1000/DMC blends. The spectral features observed using solid-state NMR spectroscopy suggest that the main surface products of the reactions of various depolymerized PDMS with pretreated nanosilica particles are the (CH3)3SiO-[(CH3)2SiO-]x fragments. The reactions occur with the siloxane bond breakage by DMC and replacing surface hydroxyls. Changes in the chemical shifts and line widths, as shown by solid-state NMR, provide novel information on the whole structure of functionalized nanosilica particles. This study highlights the major role of solid-state NMR spectroscopy for comprehensive characterization of functionalized solid surfaces.
Collapse
|
11
|
Jiang Y, Dincer Yilmaz NE, Barker KP, Baek J, Xia Y, Zheng X. Enhancing Mechanical and Combustion Performance of Boron/Polymer Composites via Boron Particle Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28908-28915. [PMID: 34110148 DOI: 10.1021/acsami.1c06727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-speed air-breathing propulsion systems, such as solid fuel ramjets (SFRJ), are important for space exploration and national security. The development of SFRJ requires high-performance solid fuels with excellent mechanical and combustion properties. One of the current solid fuel candidates is composed of high-energy particles (e.g., boron (B)) and polymeric binder (e.g., hydroxyl-terminated polybutadiene (HTPB)). However, the opposite polarities of the boron surface and HTPB lead to poor B particle dispersion and distribution within HTPB. Herein, we demonstrate that the surface functionalization of B particles with nonpolar oleoyl chloride greatly improves the dispersion and distribution of B particles within HTPB. The improved particle dispersion is quantitatively visualized through X-ray computed tomography imaging, and the particle/matrix interaction is evaluated by dynamic mechanical analysis. The surface-functionalized B particles can be uniformly dispersed up to 40 wt % in HTPB, the highest mass loading reported to date. The surface-functionalized B (40 wt %)/HTPB composite exhibits a 63.3% higher Young's modulus, 87.5% higher tensile strength, 16.2% higher toughness, and 16.8% higher heat of combustion than pristine B (40 wt %)/HTPB. The surface functionalization of B particles provides an effective strategy for improving the efficacy and safety of B/HTPB solid fuels for future high-speed air-breathing vehicles.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Nil Ezgi Dincer Yilmaz
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kayla P Barker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jihyun Baek
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Foroozani Behbahani A, Harmandaris V. Gradient of Segmental Dynamics in Stereoregular Poly(Methyl Methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets. Polymers (Basel) 2021; 13:830. [PMID: 33800419 PMCID: PMC7962820 DOI: 10.3390/polym13050830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
Segmental dynamics in unentangled isotactic, syndiotactic, and atactic poly(methyl methacrylate) (i-, a-, and s-PMMA) melts confined between pristine graphene, reduced graphene oxide, RGO, or graphene oxide, GO, sheets is studied at various temperatures, well above glass transition temperature, via atomistic molecular dynamics simulations. The model RGO and GO sheets have different degrees of oxidization. The segmental dynamics is studied through the analysis of backbone torsional motions. In the vicinity of the model nanosheets (distances less than ≈2 nm), the dynamics slows down; the effect becomes significantly stronger with increasing the concentration of the surface functional groups, and hence increasing polymer/surface specific interactions. Upon decreasing temperature, the ratios of the interfacial segmental relaxation times to the respective bulk relaxation times increase, revealing the stronger temperature dependence of the interfacial segmental dynamics relative to the bulk dynamics. This heterogeneity in temperature dependence leads to the shortcoming of the time-temperature superposition principle for describing the segmental dynamics of the model confined melts. The alteration of the segmental dynamics at different distances, d, from the surfaces is described by a temperature shift, ΔTseg(d) (roughly speaking, shift of a characteristic temperature). Next, to a given nanosheet, i-PMMA has a larger value of ΔTseg than a-PMMA and s-PMMA. This trend correlates with the better interfacial packing and longer trains of i-PMMA chains. The backbone torsional autocorrelation functions are shown in the frequency domain and are qualitatively compared to the experimental dielectric loss spectra for the segmental α-relaxation in polymer nanocomposites. The εT″(f) (analogous of dielectric loss, ε″(f), for torsional motion) curves of the model confined melts are broader (toward lower frequencies) and have lower amplitudes relative to the corresponding bulk curves; however, the peak frequencies of the εT″(f) curves are only slightly affected.
Collapse
Affiliation(s)
- Alireza Foroozani Behbahani
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, GR-71110 Heraklion, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, GR-71110 Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-70013 Heraklion, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| |
Collapse
|
13
|
Wei T, Torkelson JM. Molecular Weight Dependence of the Glass Transition Temperature ( Tg)-Confinement Effect in Well-Dispersed Poly(2-vinyl pyridine)–Silica Nanocomposites: Comparison of Interfacial Layer Tg and Matrix Tg. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tong Wei
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Christodoulou E, Klonos PA, Tsachouridis K, Zamboulis A, Kyritsis A, Bikiaris DN. Synthesis, crystallization, and molecular mobility in poly(ε-caprolactone) copolyesters of different architectures for biomedical applications studied by calorimetry and dielectric spectroscopy. SOFT MATTER 2020; 16:8187-8201. [PMID: 32789409 DOI: 10.1039/d0sm01195a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we synthesized poly(ε-caprolactone) (PCL) and three copolyesters of different architectures based on three different alcohols, namely a three arm-copolymer based on 1% glycerol (PCL_Gly), a four arm-copolymer based on 1% pentaerythrytol (PCL_PE), and a linear block copolymer based on ∼50% methoxy-poly(ethylene glycol) (PCL_mPEG), all simultaneously with the ring opening polymerization (ROP) of PCL. Due to their biocompatibility and low toxicity, these systems are envisaged for use in drug delivery and tissue engineering applications. Due to the in situ ROP during the copolyesters synthesis, the molecular weight of PCL, Wm initially ∼62 kg mol-1, drops in the copolymers from ∼60k down to ∼5k. For the structure-properties investigation we employed differential scanning calorimetry (DSC and TMDSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier transform infra red (FTIR) spectroscopy, polarized optical microscopy (POM), broadband dielectric spectroscopy (BDS) and isothermal water sorption. DSC revealed that the crystalline fraction of PCL increases whereas the crystallization rate drops in the copolymers in the order PCL ∼ PCL_Gly > PCL_PE ≫ PCL_mPEG, which coincides with that of decreasing Wm. In PCL_mPEG the major amount of PCL (87%) was found to crystallize while the majority of mPEG (92%) was found amorphous exhibiting constrained amorphous mobility and severely slower/weaker crystallization as compared to neat mPEG. Segmental dynamics in BDS, in agreement with DSC, is similar and in general slow for the samples of star-like structure for Wm ≥ 30k arising from PCL, whereas it is severely faster and enhanced in strength for the linear PCL_mPEG (lower Wm) copolymer arising from mPEG. For the latter system, the data provide indications for the formation of complex structures consisting of many small PCL crystallites surrounded by amorphous mPEG segments with constrained dynamics and severely suppressed hydrophilicity. These effects cannot be easily assessed by conventional XRD and POM, confirming the power of the dielectric technique. The overall recordings indicated that the different polymer architecture results in severe changes in the semicrystalline morphology, which demonstrates the potential for tuning the final product performance (permeability, mechanical).
Collapse
Affiliation(s)
- Evi Christodoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. and Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Kostas Tsachouridis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
15
|
Glosz K, Stolarczyk A, Jarosz T. Siloxanes-Versatile Materials for Surface Functionalisation and Graft Copolymers. Int J Mol Sci 2020; 21:ijms21176387. [PMID: 32887491 PMCID: PMC7504594 DOI: 10.3390/ijms21176387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Siloxanes are adaptable species that have found extensive applications as versatile materials for functionalising various surfaces and as building blocks for polymers and hybrid organic-inorganic systems. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to siloxanes and their applications, particularly regarding surface modification and the synthesis of graft copolymers bearing siloxane or polysiloxane segments. The key strategies for both functionalisation and synthesis of siloxane-bearing polymers are highlighted, and the various trends in the development of siloxane-based materials and the intended directions of their applications are explored.
Collapse
Affiliation(s)
- Karolina Glosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland; (K.G.); (A.S.)
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland; (K.G.); (A.S.)
| | - Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland; (K.G.); (A.S.)
- Correspondence: ; Tel.: +48-32-237-18-35
| |
Collapse
|
16
|
Interfacial phenomena and molecular dynamics in core-shell-type nanocomposites based on polydimethylsiloxane and fumed silica: Comparison between impregnation and the new mechano-sorption modification as preparation methods. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Klonos PA, Papadopoulos L, Terzopoulou Z, Papageorgiou GZ, Kyritsis A, Bikiaris DN. Molecular Dynamics in Nanocomposites Based on Renewable Poly(butylene 2,5-furan-dicarboxylate) In Situ Reinforced by Montmorillonite Nanoclays: Effects of Clay Modification, Crystallization, and Hydration. J Phys Chem B 2020; 124:7306-7317. [PMID: 32786716 DOI: 10.1021/acs.jpcb.0c04306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study deals with poly(butylene 2,5-furan-dicarboxylate), PBF, a renewable bio-based polyester expected to replace non-eco-friendly fossil-based homologues. PBF exhibits excellent gas barrier properties, which makes it promising for packaging applications; however, its rather low and slow crystallinity affects good mechanical performance. The crystallization of this relatively new polymer is enhanced here via reinforcement by introduction in situ of 1 wt % montmorillonite, MMT, nanoclays of three types (functionalizations). We study PBF and its nanocomposites (PNCs) also from the basic research point of view, molecular dynamics. For this work, we employ the widely used combination of techniques, differential scanning calorimetry (DSC) with broad-band dielectric relaxation spectroscopy (BDS), supplemented by polarized light microscopy (PLM) and thermogravimetric analysis (TGA). In the PNCs, the crystalline rate and fraction, CF, were found to be strongly enhanced as these fillers act as additional crystallization nuclei. The improvements in crystallization here correlate quite well with those on the mechanical performance recorded recently; moreover, they occur in the same filler order, in particular, with increasing MMT interlayer distance (from ∼1 to ∼3 nm). In the amorphous fraction of the polymer, the chain diffusion (calorimetric Tg and dynamic α process) is easier in the PNCs due to their slightly smaller length, while in the semicrystalline state, it decelerates by crystal-induced constraints. The local polymer dynamics (β process, below Tg) was found to be independent of the PNC composition, however, sensitive to structural changes of the matrix. Finally, a filler-induced dynamics was additionally recorded in the PNCs (α* process), arising possibly from the polymer located at the MMT surfaces. α* follows the changes in polymer chain length and decelerates with crystallization, whereas its activation energy decreases with mild hydration. The combined results on α* with the DSC and TGA findings, provide proof for weak MMT-PBF interactions. Overall, our results, along with data from the literature, suggest that such furan-based polyesters reinforced with properly chosen nanofillers could potentially serve well as tailor-made PNCs for targeted applications.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.,Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece
| | - Lazaros Papadopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Papageorgiou
- Laboratory of Industrial and Food Chemistry, Chemistry Department, University of Ioannina, 451 10 Ioannina, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
18
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Popov I, Carroll B, Bocharova V, Genix AC, Cheng S, Khamzin A, Kisliuk A, Sokolov AP. Strong Reduction in Amplitude of the Interfacial Segmental Dynamics in Polymer Nanocomposites. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby Carroll
- Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anne-Caroline Genix
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier F-34095, France
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lancing, Michigan 48824, United States
| | - Airat Khamzin
- Institute of Physics, Kazan Federal University, Kremlevskaya Str. 18, Kazan, Tatarstan 420008, Russia
| | - Alexander Kisliuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Robles-Hernández B, Monnier X, Pomposo JA, Gonzalez-Burgos M, Cangialosi D, Alegría A. Glassy Dynamics of an All-Polymer Nanocomposite Based on Polystyrene Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Xavier Monnier
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Jose A. Pomposo
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Marina Gonzalez-Burgos
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Daniele Cangialosi
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Angel Alegría
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
21
|
Protsak I, Gun’ko VM, Henderson IM, Pakhlov EM, Sternik D, Le Z. Nanostructured Amorphous Silicas Hydrophobized by Various Pathways. ACS OMEGA 2019; 4:13863-13871. [PMID: 31497703 PMCID: PMC6714511 DOI: 10.1021/acsomega.9b01508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Various nanostructured amorphous silicas [fumed silicas such as crude (A-300), hydro-compacted (cA-300, TS 100), and precipitated silica Syloid 244] were modified by different polydimethylsiloxanes such as PDMS5, PDMS100, PDMS200, PDMS1000, and PDMS12500 (the label numbers show the viscosity (η) values) using dimethyl carbonate (DMC) as a siloxane-bond-breaking reagent. In addition, hexamethyldisilazane was used to modify fumed silica cA-300. The nanocomposites were characterized using microscopy, infrared spectroscopy, thermodesorption, nitrogen adsorption-desorption, solid-state NMR spectroscopy, small-angle X-ray scattering, and zeta-potential methods. It was found that the morphological, textural, and structural characteristics of silicas grafted with PDMS depend strongly not only on the type and content of the polymers used but also on the organization of nonporous nanoparticles (NPNP) in secondary structures (aggregates of NPNP and agglomerated aggregates, ANPNP), as well on the reaction temperature (T r). Specifically, we determined that ANPNP with a macro/mesoporous character are favorable for the effective modification of the silicas studied with short polymers and no DMC addition but at higher temperatures or for a longer silicone polymer with the presence of DMC and at lower temperatures. In particular, the PDMS/DMC-modified silicas are of great interest from a practical point of view because they remain in a dispersed state with no strong compaction of the secondary structures after modification, and this corresponds to a better distribution of the modified nanoparticles in polymeric or other matrices.
Collapse
Affiliation(s)
- Iryna
S. Protsak
- College
of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- College
of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Volodymyr M. Gun’ko
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, Kiev 03164, Ukraine
| | - Ian M. Henderson
- Omphalos
Bioscience, LLC, Albuquerque 87110, New Mexico, United States
| | - Evgeniy M. Pakhlov
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, Kiev 03164, Ukraine
| | | | - Zichun Le
- College
of Science, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|