1
|
Liu Y, Pan X, He Y, Guo B, Xu J. In Situ Monitoring and Tuning Multilayer Stacking of Polymer Lamellar Crystals in Solution with Aggregation-Induced Emission. NANO LETTERS 2024. [PMID: 38621356 DOI: 10.1021/acs.nanolett.3c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Many types of self-assembled 2D materials with fascinating morphologies and novel properties have been prepared and used in solution. However, it is still a challenge to monitor their in situ growth in solution and to control the number of layers in these materials. Here, we demonstrate that the aggregation-induced emission (AIE) effect can be applied for the in situ decoupled tracing of the lateral growth and multilayer stacking of polymer lamellar crystals in solution. Multilayer stacking considerably enhances the photoluminescence intensity of the AIE molecules sandwiched between two layers of lamellar crystals, which is 2.4 times that on the surface of monolayer crystals. Both variation of the self-seeding temperature of crystal seeds and addition of a trace amount of long polymer chains during growth can control multilayer lamellar stacking, which are applied to produce tunable fluorescent patterns for functional applications.
Collapse
Affiliation(s)
- Yang Liu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Xinyi Pan
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Yaning He
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
2
|
Wang Z, Duan R, Pang X, Wu R, Guo B, Xu J. Critical Size and Formation Mechanism of Secondary Nuclei in Melt-Crystallized Polylactide Stereocomplex Crystals. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084Beijing, China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Rongling Wu
- Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, Pennsylvania17033, United States
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084Beijing, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084Beijing, China
| |
Collapse
|
3
|
Yu M, Du Y, Xu P, Yang W, Zhang P, Liu T, Lemstra PJ, Ma P. Nucleation and crystallization of poly(L-lactide) assisted by terminal hydrogen-bonding segments. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Wu T, Chandran S, Zhang Y, Zheng T, Pfohl T, Xu J, Reiter G. Primary Nucleation in Metastable Solutions of Poly(3-hexylthiophene). Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyu Wu
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | | | - Yao Zhang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Tianze Zheng
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Thomas Pfohl
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Quantitative contribution of each component to secondary nucleation in the blends of homopolymer and its random copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Chen P, Xu M, Li X, Han Y, Ding J, Lin Y, Liu G, Zhang X, Chen L, Tian XY. The Influence of Melt Status and Beta-Nucleation Agent Distribution on the Crystallization of Isotactic Polypropylene. CrystEngComm 2022. [DOI: 10.1039/d1ce01660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although being investigated extensively in past decades, the factors affecting β-crystallization in β-nucleating agent/iPP composites have not been identified completely. In this study, β-crystallization in mesomorphic melt and free melt...
Collapse
|
7
|
Li Y, Li T, Li W, Lou Y, Liu L, Ma Z. The II-I Phase Transition Behavior of Butene-1 Copolymers with Hydroxyl Groups. Polymers (Basel) 2021; 13:polym13081315. [PMID: 33923827 PMCID: PMC8074023 DOI: 10.3390/polym13081315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
The crystallization and II–I phase transition of functionalized polybutene-1 with hydroxyl groups were investigated by differential scanning calorimetry. The results show that the incorporated hydroxyl groups increase the nucleation density but decrease the growth rate in melt crystallization. Interestingly, for the generated tetragonal form II, the presence of polar hydroxyl groups can effectively accelerate the phase transition into the thermodynamically stable modification of trigonal form I, especially with stepwise annealing and high incorporation. Using stepwise annealing, II–I phase transition was enhanced by an additional nucleation step performed at a relatively low temperature, and the optimal nucleation temperature to obtain the maximum transition degree was ‒10 °C, which is independent from the content of hydroxyl groups. Furthermore, the accelerating effect of hydroxyl groups on the II–I transition kinetics can be increased by reducing the crystallization temperature when preparing form II crystallites. These results provide a potential molecular design approach for developing polybutene-1 materials.
Collapse
Affiliation(s)
- Yuanyuan Li
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Tao Li
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Wei Li
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Yahui Lou
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
| | - Liyuan Liu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (L.L.); (Z.M.)
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.L.); (T.L.); (W.L.); (Y.L.)
- Correspondence: (L.L.); (Z.M.)
| |
Collapse
|
8
|
Abstract
Nucleation plays a vital role in polymer crystallization, in which chain connectivity and thus the multiple length and time scales make crystal nucleation of polymer chains an interesting but complex subject. Though the topic has been intensively studied in the past decades, there are still many open questions to answer. The final properties of semicrystalline polymer materials are affected by all of the following: the starting melt, paths of nucleation, organization of lamellar crystals and evolution of the final crystalline structures. In this viewpoint, we attempt to discuss some of the remaining open questions and corresponding concepts: non-equilibrated polymers, self-induced nucleation, microscopic kinetics of different processes, metastability of polymer lamellar crystals, hierarchical order and cooperativity involved in nucleation, etc. Addressing these open questions through a combination of novel concepts, new theories and advanced approaches provides a deeper understanding of the multifaceted process of crystal nucleation of polymers.
Collapse
|
9
|
Zhang S, Wang Z, Guo B, Xu J. Secondary nucleation in polymer crystallization: A kinetic view. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shujing Zhang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|
10
|
Melting and Annealing Peak Temperatures of Poly(butylene succinate) on the Same Hoffman-Weeks Plot Parallel to Tm=Tc Line. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2530-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wang B, He K, Lu Y, Zhou Y, Chen J, Shen C, Chen J, Men Y, Zhang B. Nucleation Mechanism for Form II to I Polymorphic Transformation in Polybutene-1. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Binghua Wang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Kangzhu He
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yaguang Lu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yufeng Zhou
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jinlong Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Changyu Shen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yongfeng Men
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Bin Zhang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
12
|
Zhang S, Guo B, Reiter G, Xu J. Estimation of the Size of Critical Secondary Nuclei of Melt-Grown Poly(l-lactide) Lamellar Crystals. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shujing Zhang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Günter Reiter
- Institute of Physics and Freiburg Materials Research Center, Albert-Ludwig-University of Freiburg, 79104 Freiburg, Germany
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| |
Collapse
|