1
|
Gao J, Ren Y, Lu Y, Ma Q, Sun Y, Jia L. Fabrication of Hierarchical Assemblies through Temperature-Triggered Liquid Crystallization Driven Self-Assembly. SMALL METHODS 2024; 8:e2301525. [PMID: 38185748 DOI: 10.1002/smtd.202301525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Indexed: 01/09/2024]
Abstract
Functional hierarchy is prevalent in biological systems owing to natural evolution. Efforts to replicate these structures in artificial materials have gained traction in materials science. Although artificial hierarchical structures are fabricated at different scales based on site-specific interactions using ABC-type block copolymers (BCPs), the fabrication of such hierarchical structures using AB-type BCPs via a simple and efficient method remains challenging. Herein, a class of amphiphilic BCPs (PDenm-b-PACholn) is reported comprising dendronized oligoethylene glycol (Den) and cholesterol (AChol) as hydrophilic and hydrophobic moieties, respectively. By employing the collapse of PDenm blocks at a specific temperature, the fabrication of bundled fibers and multilayer vesicles is achieved with an obvious hierarchy. Different from common reversible aggregation-disaggregation processes of thermal-responsive polymers, the ordering of the core-forming block with liquid crystalline (LC) properties provides robustly physical cross-linking, coupled with epitaxial growth and the lateral fusion of LC blocks, guiding the formation of stable hierarchical micellar structures. It is highlighted that the combination of temperature-sensitive properties and LC ordering alignment offers a novel approach for constructing hierarchical structures using AB-type BCPs via an efficient one-step assembly method.
Collapse
Affiliation(s)
- Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Qingyang Ma
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yixin Sun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
2
|
Zhang C, Gao L, Lin J, Wang L. Hierarchical 2D-1D micelles self-assembled from the heterogeneous seeded-growth of rod-coil block copolymers. NANOSCALE 2023; 15:1412-1421. [PMID: 36594400 DOI: 10.1039/d2nr05618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise control of size and dimension is the key to constructing complex hierarchical nanostructures, particularly multi-dimensional hybrid nanoassemblies. Herein, we conducted Brownian dynamics simulations to examine the seeded-growth of rod-coil block copolymer assemblies and discovered that 2D-1D (disk-cylinder) hybrid micelles could be formed via liquid-crystallization-driven self-assembly (LCDSA). 2D nanodisk micelles with smectic-like LC cores served as seeds. After adding rod-coil block copolymers into the seed solution, the copolymers incorporated onto the 2D seed edges to generate junction points. Several cylindrical arms were formed from the elongation of junction points, resulting in 2D-1D multi-dimensional hybrid micelles. The structural transition of the micelle core from smectic-like (disk) to cholesteric-like (cylindrical arms) LC packing manners benefit from the fluidity of LC. Such a seeded-growth behavior simultaneously exhibits the features of heterogeneous nucleation and homogenous epitaxy growth. Intriguingly, the arms generate in sequence, and its junction position is in the para-position first, followed by ortho-position or meta-position, resembling the difference in the substituent activities on the benzene ring. These theoretical findings are consistent with experimental results, and provide explanations to some unaddressed issues in experiments. The obtained results also reveal that the hybrid micelles are a good stabilizer due to their high surface area and distinctive suspension behaviors.
Collapse
Affiliation(s)
- Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Deng R, Mao X, Pearce S, Tian J, Zhang Y, Manners I. Role of Competitive Crystallization Kinetics in the Formation of 2D Platelets with Distinct Coronal Surface Patterns via Seeded Growth. J Am Chem Soc 2022; 144:19051-19059. [PMID: 36201750 DOI: 10.1021/jacs.2c07962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low dispersity 2D platelet micelles with controllable surface patterns were prepared by seeded-growth/living crystallization-driven self-assembly (CDSA) of block copolymer/homopolymer (BCP/HP) blends of poly(ferrocenyldimethylsilane)-b-poly(2-vinyl pyridine) (PFS-b-P2VP) and PFS. The precise morphology was found to be dependent on the proportion of the P2VP corona block, which can be efficiently controlled by changing the molar concentration ratio of PFS-b-P2VP/PFS, (cB/cH)t, as well as their relative rates of crystallization, (GB/GH)t. In the case where their molar concentration ratio was comparable to their crystallization rate ratio, platelets with a uniform distribution of P2VP coronal chains were formed. In other cases, as the concentration ratio increased (or decreased) during the living CDSA process, hierarchical structures were formed, including chain-like assemblies consisting of end-to-end linked rectangular platelets and fusiform (tapered) micelles. (GB/GH)t was adjusted by tuning the degree of polymerization of the crystallizable PFS core-forming block and the BCP block ratio and by varying the terminus of the HP or changing the solvent used. Furthermore, the open edge of the platelets remained active for further growth, which permitted control of the morphology and dimensions of the platelets. Interestingly, in cases where the molar concentration ratio was lower than the crystallization rate ratio, growth rings were observed after two or more living CDSA steps. This study on the formation of platelet micelles by living CDSA of BCP/HP blends under kinetic control offers a considerable scope for the design of 2D polymer nanomaterials with controlled shape and surface patterns.
Collapse
Affiliation(s)
- Renhua Deng
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Mao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jia Tian
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Yifan Zhang
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
4
|
Street STG, He Y, Harniman RL, Garcia-Hernandez JD, Manners I. Precision polymer nanofibers with a responsive polyelectrolyte corona designed as a modular, functionalizable nanomedicine platform. Polym Chem 2022. [DOI: 10.1039/d2py00152g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the development of a modular, functionalizable platform for biocompatible core-shell block copolymer nanofibers of controlled length (22 nm – 1.3 μm) and low dispersity produced via living crystallization-driven...
Collapse
|
5
|
|
6
|
Wang Z, Ma C, Huang X, Lu G, Winnik MA, Feng C. Self-Seeding of Oligo( p-phenylenevinylene)- b-poly(2-vinylpyridine) Micelles: Effect of Metal Ions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
7
|
Yang S, Kang SY, Choi TL. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat Commun 2021; 12:2602. [PMID: 33972541 PMCID: PMC8110585 DOI: 10.1038/s41467-021-22879-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 11/11/2022] Open
Abstract
Semi-conducting two-dimensional (2D) nanoobjects, prepared by self-assembly of conjugated polymers, are promising materials for optoelectronic applications. However, no examples of self-assembled semi-conducting 2D nanosheets whose lengths and aspect ratios are controlled at the same time have been reported. Herein, we successfully prepared uniform semi-conducting 2D sheets using a conjugated poly(cyclopentenylene vinylene) homopolymer and its block copolymer by blending and heating. Using these as 2D seeds, living crystallization-driven self-assembly (CDSA) was achieved by adding the homopolymer as a unimer. Interestingly, unlike typical 2D CDSA examples showing radial growth, this homopolymer assembled only in one direction. Owing to this uniaxial growth, the lengths of the 2D nanosheets could be precisely tuned from 1.5 to 8.8 μm with narrow dispersity according to the unimer-to-seed ratio. We also studied the growth kinetics of the living 2D CDSA and confirmed first-order kinetics. Subsequently, we prepared several 2D block comicelles (BCMs), including penta-BCMs in a one-shot method.
Collapse
Affiliation(s)
- Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
8
|
Ellis CE, Fukui T, Cordoba C, Blackburn A, Manners I. Towards scalable, low dispersity, and dimensionally tunable 2D platelets using living crystallization-driven self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00571e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scalable low dispersity platelets were accessed through the self-assembly of crystallizable charge-terminated PFS homopolymers. The use of surfactant counteranions, as well as increasing the self-assembly temperature, improved structure fidelity.
Collapse
Affiliation(s)
| | - Tomoya Fukui
- Department of Chemistry
- University of Victoria
- Canada
| | | | | | - Ian Manners
- Department of Chemistry
- University of Victoria
- Canada
| |
Collapse
|
9
|
Jarrett-Wilkins CN, Pearce S, MacFarlane LR, Davis SA, Faul CFJ, Manners I. Surface Patterning of Uniform 2D Platelet Block Comicelles via Coronal Chain Collapse. ACS Macro Lett 2020; 9:1514-1520. [PMID: 35617078 DOI: 10.1021/acsmacrolett.0c00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of colloids with anisotropically patterned surfaces is of growing interest for the creation of hierarchical structures and the templating of nanoparticles. We have recently shown that well-defined two-dimensional platelets with low areal dispersities can be formed by the seeded growth of a blend of homopolymers and block copolymers. Herein we form rectangular platelets containing two block copolymers with different coronal chemistries. On addition of a solvent that is only able to solvate the corona of one block, we were able to form colloidally stable micelles with patterned surfaces via coronal collapse. Scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy and atomic force microscopy were employed to provide information on the structure and size of the patches decorating the micelle surfaces.
Collapse
Affiliation(s)
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Liam R. MacFarlane
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3 V6, Canada
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3 V6, Canada
| |
Collapse
|
10
|
Ma C, Tao D, Cui Y, Huang X, Lu G, Feng C. Fragmentation of Fiber-like Micelles with a π-Conjugated Crystalline Oligo( p-phenylenevinylene) Core and a Photocleavable Corona in Water: A Matter of Density of Corona-Forming Chains. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Daliao Tao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|