1
|
Chau A, Edwards CER, Helgeson ME, Pitenis AA. Designing Superlubricious Hydrogels from Spontaneous Peroxidation Gradients. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43075-43086. [PMID: 37650860 PMCID: PMC10510045 DOI: 10.1021/acsami.3c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Hydrogels are hydrated three-dimensional networks of hydrophilic polymers that are commonly used in the biomedical industry due to their mechanical and structural tunability, biocompatibility, and similar water content to biological tissues. The surface structure of hydrogels polymerized through free-radical polymerization can be modified by controlling environmental oxygen concentrations, leading to the formation of a polymer concentration gradient. In this work, 17.5 wt % polyacrylamide hydrogels are polymerized in low (0.01 mol % O2) and high (20 mol % O2) oxygen environments, and their mechanical and tribological properties are characterized through microindentation, nanoindentation, and tribological sliding experiments. Without significantly reducing the elastic modulus of the hydrogel (E* ≈ 200 kPa), we demonstrate an order of magnitude reduction in friction coefficient (from μ = 0.021 ± 0.006 to μ = 0.002 ± 0.001) by adjusting polymerization conditions (e.g., oxygen concentration). A quantitative analytical model based on polyacrylamide chemistry and kinetics was developed to estimate the thickness and structure of the monomer conversion gradient, termed the "surface gel layer". We find that polymerizing hydrogels at high oxygen concentrations leads to the formation of a preswollen surface gel layer that is approximately five times thicker (t ≈ 50 μm) and four times less concentrated (≈ 6% monomer conversion) at the surface prior to swelling compared to low oxygen environments (t ≈ 10 μm, ≈ 20% monomer conversion). Our model could be readily modified to predict the preswollen concentration profile of the polyacrylamide gel surface layer for any reaction conditions─monomer and initiator concentration, oxygen concentration, reaction time, and reaction media depth─or used to select conditions that correspond to a certain desired surface gel layer profile.
Collapse
Affiliation(s)
- Allison
L. Chau
- Materials
Department, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Chelsea E. R. Edwards
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Matthew E. Helgeson
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Angela A. Pitenis
- Materials
Department, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Mees J, O'Connor TC, Pastewka L. Entropic stress of grafted polymer chains in shear flow. J Chem Phys 2023; 159:094902. [PMID: 37668251 DOI: 10.1063/5.0158245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
We analyze the shear response of grafted polymer chains in shear flow via coarse-grained molecular dynamics simulations with an explicit solvent. We find that the solvent flow penetrates into almost the whole brush for "mushroom"-type brushes but only a few bond distances for dense brushes. In all cases, the external stress on the wall equals the entropic stress associated with the distorted polymer conformations. We find that the external stress increases linearly with shear rate at low rates and sublinearly at high rates. The transition from linear to sublinear scaling occurs where chains react to flow by reorienting. Sublinear scaling with shear rate disappears if the shear rate is nondimensionalized with the effective relaxation time of chain subsegments located in the outer part of the brush that experiences flow.
Collapse
Affiliation(s)
- Jan Mees
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
- Cluster of Excellence LivMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Thomas C O'Connor
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lars Pastewka
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
- Cluster of Excellence LivMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
3
|
Junisu BA, Chang ICY, Lin CC, Sun YS. Surface Wrinkling on Polymer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3907-3916. [PMID: 35298168 DOI: 10.1021/acs.langmuir.2c00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of gold precursor solutions are prepared by dissolving HAuCl4 and its mixtures with K2CO3 of different contents in deionized (DI) water. Neat HAuCl4 predominately forms AuCl4- ions in an aqueous solution. In the presence of K2CO3, AuCl4- ions hydrolyze to form [AuCl4-x(OH)x]- complex ions. Increasing the content of K2CO3 in a gold precursor solution increases the content of [AuCl4-x(OH)x]- complex ions and decreases the content of AuCl4- ions. Poly(4-vinyl pyridine) (P4VP) films of two different molecular weights are deposited on SiOx/Si by spin coating, by which the thicknesses are controlled by polymer weight fractions in butanol. Those P4VP films form periodic wrinkles when immersed in aqueous solutions, followed by drying. The surface wrinkling is induced by swelling pressure that overwhelms the mechanical property of the P4VP film. The periodicity and amplitude of wrinkles grown on the P4VP films strongly correlate with initial thickness, AuCl4- ion content, and residual stress.
Collapse
Affiliation(s)
- Belda Amelia Junisu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Chi Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
4
|
Sum frequency generation imaging for semi-crystalline polymers. Polym J 2022. [DOI: 10.1038/s41428-021-00613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Asgharnejad Lamraski MB, Naikoo GA, Zamani Pedram M, Sohani A, Hoseinzadeh S, Moradi H. Thermodynamic modeling of several alcohol-hydrocarbon binary mixtures at low to moderate conditions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Oda Y, Inutsuka M, Awane R, Totani M, Yamada NL, Haraguchi M, Ozawa M, Matsuno H, Tanaka K. A Dynamic Interface Based on Segregation of an Amphiphilic Hyperbranched Polymer Containing Fluoroalkyl and Oligo(ethylene oxide) Moieties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yukari Oda
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Manabu Inutsuka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryo Awane
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Masayasu Totani
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Norifumi L. Yamada
- Neutron Science Division, Institute of Materials Structure Science, High Energy Acceleration Research Organization, Ibaraki 319-1106, Japan
| | - Masayuki Haraguchi
- Materials Research Laboratories, Nissan Chemical Corporation, Chiba 274-0052, Japan
| | - Masaaki Ozawa
- Materials Research Laboratories, Nissan Chemical Corporation, Chiba 274-0052, Japan
| | - Hisao Matsuno
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|