1
|
Concellón A. Liquid Crystal Emulsions: A Versatile Platform for Photonics, Sensing, and Active Matter. Angew Chem Int Ed Engl 2023:e202308857. [PMID: 37694542 DOI: 10.1002/anie.202308857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/12/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The self-assembly of liquid crystals (LCs) is a fascinating method for controlling the organization of discrete molecules into nanostructured functional materials. Although LCs are traditionally processed in thin films, their confinement within micrometre-sized droplets has recently revealed new properties and functions, paving the way for next-generation soft responsive materials. These recent findings have unlocked a wealth of unprecedented applications in photonics (e.g. reflectors, lasing materials), sensing (e.g. biomolecule and pathogen detection), soft robotics (e.g. micropumps, artificial muscles), and beyond. This Minireview focuses on recent developments in LC emulsion designs and highlights a variety of novel potential applications. Perspectives on the opportunities and new directions for implementing LC emulsions in future innovative technologies are also provided.
Collapse
Affiliation(s)
- Alberto Concellón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
2
|
Confinement-Induced Fabrication of Liquid Crystalline Polymeric Fibers. Molecules 2022; 27:molecules27175639. [PMID: 36080405 PMCID: PMC9458136 DOI: 10.3390/molecules27175639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
In aqueous media, liquid crystalline droplets typically form spherical shapes in order to minimize surface energy. Recently, non-spherical geometry has been reported using molecular self-assembly of surfactant-stabilized liquid crystalline oligomers, resulting in branched and randomly oriented filamentous networks. In this study, we report a polymerization of liquid crystalline polymeric fibers within a micro-mold. When liquid crystal oligomers are polymerized in freely suspended aqueous media, curvilinear and randomly networked filaments are obtained. When reactive liquid crystalline monomers are oligomerized in a micro-channel, however, highly aligned linear fibers are polymerized. Within a top-down microfabricated mold, a bottom-up molecular assembly was successfully achieved in a controlled manner by micro-confinement, suggesting a unique opportunity for the programming architecture of materials via a hybrid approach.
Collapse
|
3
|
E7 nematic liquid crystal encapsulated in a polymeric photonic crystal. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Precipitation Polymerization: A Powerful Tool for Preparation of Uniform Polymer Particles. Polymers (Basel) 2022; 14:polym14091851. [PMID: 35567018 PMCID: PMC9105061 DOI: 10.3390/polym14091851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Precipitation polymerization (PP) is a powerful tool to prepare various types of uniform polymer particles owing to its outstanding advantages of easy operation and the absence of any surfactant. Several PP approaches have been developed up to now, including traditional thermo-induced precipitation polymerization (TRPP), distillation precipitation polymerization (DPP), reflux precipitation polymerization (RPP), photoinduced precipitation polymerization (PPP), solvothermal precipitation polymerization (SPP), controlled/‘‘living’’ radical precipitation polymerization (CRPP) and self-stabilized precipitation polymerization (2SPP). In this review, a general introduction to the categories, mechanisms, and applications of precipitation polymerization and the recent developments are presented, proving that PP has great potential to become one of the most attractive polymerization techniques in materials science and bio-medical areas.
Collapse
|
5
|
Lugger SJ, Houben SJA, Foelen Y, Debije MG, Schenning APHJ, Mulder DJ. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem Rev 2022; 122:4946-4975. [PMID: 34428022 PMCID: PMC8915167 DOI: 10.1021/acs.chemrev.1c00330] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 01/18/2023]
Abstract
Hydrogen-bonded liquid crystalline polymers have emerged as promising "smart" supramolecular functional materials with stimuli-responsive, self-healing, and recyclable properties. The hydrogen bonds can either be used as chemically responsive (i.e., pH-responsive) or as dynamic structural (i.e., temperature-responsive) moieties. Responsiveness can be manifested as changes in shape, color, or porosity and as selective binding. The liquid crystalline self-organization gives the materials their unique responsive nanostructures. Typically, the materials used for actuators or optical materials are constructed using linear calamitic (rod-shaped) hydrogen-bonded complexes, while nanoporous materials are constructed from either calamitic or discotic (disk-shaped) complexes. The dynamic structural character of the hydrogen bond moieties can be used to construct self-healing and recyclable supramolecular materials. In this review, recent findings are summarized, and potential future applications are discussed.
Collapse
Affiliation(s)
- Sean J.
D. Lugger
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Simon J. A. Houben
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Yari Foelen
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Michael G. Debije
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Albert P. H. J. Schenning
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SCNU-TUE
Joint Laboratory of Device Integrated Responsive Materials (DIRM), South China Normal University, Guangzhou Higher Education Mega Center, 510006 Guangzhou, China
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Dirk J. Mulder
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Zhang X, Lin G, Guo H, Yang F. Tetraphenylethylene-rufigallol-tetraphenylethylene trimers: Novel fluorescence liquid crystals in aggregated states. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Liu X, Moradi M, Bus T, Debije MG, Bon SAF, Heuts JPA, Schenning APHJ. Flower‐Like Colloidal Particles through Precipitation Polymerization of Redox‐Responsive Liquid Crystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohong Liu
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Mohammad‐Amin Moradi
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Laboratory of Physical Chemistry Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Tom Bus
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Michael G. Debije
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Stefan A. F. Bon
- Department of Chemistry The University of Warwick Coventry CV4 7AL UK
| | - Johan P. A. Heuts
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Supramolecular Polymer Chemistry group Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Albert P. H. J. Schenning
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| |
Collapse
|
8
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
9
|
Liu X, Moradi MA, Bus T, Debije MG, Bon SAF, Heuts JPA, Schenning APHJ. Flower-Like Colloidal Particles through Precipitation Polymerization of Redox-Responsive Liquid Crystals. Angew Chem Int Ed Engl 2021; 60:27026-27030. [PMID: 34672077 PMCID: PMC9298913 DOI: 10.1002/anie.202111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/12/2022]
Abstract
We report on the synthesis of monodisperse, flower‐like, liquid crystalline (LC) polymer particles by precipitation polymerization of a LC mixture consisting of benzoic acid‐functionalized acrylates and disulfide‐functionalized diacrylates. Introduction of a minor amount of redox‐responsive disulfide‐functionalized diacrylates (≤10 wt %) induced the formation of flower‐like shapes. The shape of the particles can be tuned from flower‐ to disk‐like to spherical by elevating the polymerization temperature. The solvent environment also has a pronounced effect on the particle size. Time‐resolved TEM reveals that the final particle morphology was formed in the early stages of the polymerization and that subsequent polymerization resulted in continued particle growth without affecting the morphology. Finally, the degradation of the particles under reducing conditions was much faster for flower‐like particles than for spherical particles, likely a result of their higher surface‐to‐volume ratio.
Collapse
Affiliation(s)
- Xiaohong Liu
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Tom Bus
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Michael G Debije
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Stefan A F Bon
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
| | - Johan P A Heuts
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Supramolecular Polymer Chemistry group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Liu X, Debije MG, Heuts JPA, Schenning APHJ. Liquid-Crystalline Polymer Particles Prepared by Classical Polymerization Techniques. Chemistry 2021; 27:14168-14178. [PMID: 34320258 PMCID: PMC8596811 DOI: 10.1002/chem.202102224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/06/2022]
Abstract
Liquid-crystalline polymer particles prepared by classical polymerization techniques are receiving increased attention as promising candidates for use in a variety of applications including micro-actuators, structurally colored objects, and absorbents. These particles have anisotropic molecular order and liquid-crystalline phases that distinguish them from conventional polymer particles. In this minireview, the preparation of liquid-crystalline polymer particles from classical suspension, (mini-)emulsion, dispersion, and precipitation polymerization reactions are discussed. The particle sizes, molecular orientations, and liquid-crystalline phases produced by each technique are summarized and compared. We conclude with a discussion of the challenges and prospects of the preparation of liquid-crystalline polymer particles by classical polymerization techniques.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| | - Michael G. Debije
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| | - Johan P. A. Heuts
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| | - Albert P. H. J. Schenning
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
11
|
Liu X, Moradi MA, Bus T, Heuts JPA, Debije MG, Schenning APHJ. Monodisperse Liquid Crystalline Polymer Shells with Programmable Alignment and Shape Prepared by Seeded Dispersion Polymerization. Macromolecules 2021; 54:6052-6060. [PMID: 34276068 PMCID: PMC8280615 DOI: 10.1021/acs.macromol.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Indexed: 11/30/2022]
Abstract
![]()
Monodisperse,
micrometer-sized liquid crystalline (LC) shells are
prepared by seeded dispersion polymerization. After polymerizing LC
monomer mixtures in the presence of non-crosslinked polymer seeds,
hollow LC polymer shells with programmable alignment and shape are
prepared by removing the seeds. The LC alignment in the LC polymer
shells can be easily manipulated by the polymer seeds, as a radial
alignment is observed with amorphous poly(phenyl methacrylate) seeds
and a bipolar alignment is observed with bipolar LC polymer seeds.
After removal of the seeds, the radially aligned samples give radially
aligned shells with small dimples. The resulting bipolar LC polymer
shells collapse into a biconcave shape. Polarized optical microscopy
and transmission electron microscopy indicate that the collapse occurs
at the defect points in the shell. In the case of a lower crosslink
density, LC polymer hollow shells with larger dimples are obtained,
resulting in cup-shaped polymer particles. Biconcave LC polymer shells
based on other LC mixtures have also been prepared, showing the versatility
of the seeded dispersion polymerization method.
Collapse
Affiliation(s)
- Xiaohong Liu
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tom Bus
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Johan P A Heuts
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.,Supramolecular Polymer Chemistry Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michael G Debije
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Guo F, Ding Y, Wang Y, Gao X, Chen Z. Functional monodisperse microspheres fabricated by solvothermal precipitation co-polymerization. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Chen HQ, Wang XY, Bisoyi HK, Chen LJ, Li Q. Liquid Crystals in Curved Confined Geometries: Microfluidics Bring New Capabilities for Photonic Applications and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3789-3807. [PMID: 33775094 DOI: 10.1021/acs.langmuir.1c00256] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The quest for interesting properties and phenomena in liquid crystals toward their employment in nondisplay application is an intense and vibrant endeavor. Remarkable progress has recently been achieved with regard to liquid crystals in curved confined geometries, typically represented as enclosed spherical geometries and cylindrical geometries with an infinitely extended axial-symmetrical space. Liquid-crystal emulsion droplets and fibers are intriguing examples from these fields and have attracted considerable attention. It is especially noteworthy that the rapid development of microfluidics brings about new capabilities to generate complex soft microstructures composed of both thermotropic and lyotropic liquid crystals. This review attempts to outline the recent developments related to the liquid crystals in curved confined geometries by focusing on microfluidics-mediated approaches. We highlight a wealth of novel photonic applications and beyond and also offer perspectives on the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Han-Qing Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Xi-Yuan Wang
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
14
|
Martinez AM, Cox LM, Killgore JP, Bongiardina NJ, Riley RD, Bowman CN. Permanent and reversibly programmable shapes in liquid crystal elastomer microparticles capable of shape switching. SOFT MATTER 2021; 17:467-474. [PMID: 33346289 DOI: 10.1039/d0sm01836h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reversibly programmable liquid crystal elastomer microparticles (LCEMPs), formed as a covalent adaptable network (CAN), with an average diameter of 7 μm ± 2 μm, were synthesized via a thiol-Michael dispersion polymerization. The particles were programmed to a prolate shape via a photoinitiated addition-fragmentation chain-transfer (AFT) exchange reaction by activating the AFT after undergoing compression. Due to the thermotropic nature of the AFT-LCEMPs, shape switching was driven by heating the particles above their nematic-isotropic phase transition temperature (TNI). The programmed particles subsequently displayed cyclable two-way shape switching from prolate to spherical when at low or high temperatures, respectively. Furthermore, the shape programming is reversible, and a second programming step was done to erase the prolate shape by initiating AFT at high temperature while the particles were in their spherical shape. Upon cooling, the particles remained spherical until additional programming steps were taken. Particles were also programmed to maintain a permanent oblate shape. Additionally, the particle surface was programmed with a diffraction grating, demonstrating programmable complex surface topography via AFT activation.
Collapse
Affiliation(s)
- Alina M Martinez
- Department of Materials Science and Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA.
| | - Lewis M Cox
- Department of Mechanical Engineering, Montana State University, Culbertson Hall, 100, Bozeman, MT 59717, USA
| | - Jason P Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Nicholas J Bongiardina
- Department of Materials Science and Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA.
| | - Russell D Riley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Christopher N Bowman
- Department of Materials Science and Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA. and Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Hoji A, Muhammad T, Wubulikasimu M, Imerhasan M, Li H, Aimaiti Z, Peng X. Syntheses of BODIPY-incorporated polymer nanoparticles with strong fluorescence and water compatibility. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Preparation of metal and metal oxide doped silica hollow spheres and the evaluation of their catalytic performance. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|