1
|
Chang ZX, Hong CY, Zhang WJ. Polymerization-Induced Self-Assembly Providing PEG-Gels with Dynamic Micelle-Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances. Macromol Rapid Commun 2025; 46:e2400681. [PMID: 39427340 DOI: 10.1002/marc.202400681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self-healing performances in one gel is more difficult. Herein, polymerization-induced self-assembly (PISA) providing PEG-gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG-gels with dynamic micelle-crosslinked hierarchical structures. Compared to hydrogels, PEG-gels show excellent long-term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG-gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous-gels (without nanofillers). The energy dissipation mechanism of the PEG-gels is analyzed via stress relaxation and cyclic mechanical tests. High-density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self-healing properties of the dynamic micelle-crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.
Collapse
Affiliation(s)
- Zi-Xuan Chang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chun-Yan Hong
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wen-Jian Zhang
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
2
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Wu Z, Fang W, Wu C, Corrigan N, Zhang T, Xu S, Boyer C. An aqueous photo-controlled polymerization under NIR wavelengths: synthesis of polymeric nanoparticles through thick barriers. Chem Sci 2022; 13:11519-11532. [PMID: 36320386 PMCID: PMC9555728 DOI: 10.1039/d2sc03952d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 09/19/2023] Open
Abstract
We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition-fragmentation chain transfer (photo-RAFT) polymerization system using tetrasulfonated zinc phthalocyanine (ZnPcS4 -) as a photocatalyst. Owing to the high catalytic efficiency and excellent oxygen tolerance of this system, well-controlled polyacrylamides, polyacrylates, and polymethacrylates were synthesized at fast rates without requiring deoxygenation. Notably, NIR wavelengths possess enhanced light penetration through non-transparent barriers compared to UV and visible light, allowing high polymerization rates through barriers. Using 6.0 mm pig skin as a barrier, the polymerization rate was only reduced from 0.36 to 0.21 h-1, indicating potential for biomedical applications. Furthermore, longer wavelengths (higher λ) can be considered an ideal light source for dispersion photopolymerization, especially for the synthesis of large diameter (d) nanoparticles, as light scattering is proportional to d 6/λ 4. Therefore, this aqueous photo-RAFT system was applied to photoinduced polymerization-induced self-assembly (photo-PISA), enabling the synthesis of polymeric nanoparticles with various morphologies, including spheres, worms, and vesicles. Taking advantage of high penetration and reduced light scattering of NIR wavelengths, we demonstrate the first syntheses of polymeric nanoparticles with consistent morphologies through thick barriers.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Wenbo Fang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 Shandong P. R. China
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Tong Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Sihao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
4
|
Gan Y, Dai H, Ma Y, Cheng X, Wang Z, Zhang W. Regulating Chiral Helical Structures in Liquid-Crystalline Block Copolymers with Chiroptical Response by Synergistic Asymmetric Effects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yijing Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hongbin Dai
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yafei Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Zhang Y, Wang P, Li N, Guo C, Li S. The Effect of Topology on Block Copolymer Nanoparticles: Linear versus Star Block Copolymers in Toluene. Polymers (Basel) 2022; 14:polym14173691. [PMID: 36080766 PMCID: PMC9460934 DOI: 10.3390/polym14173691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Linear and star block copolymer (BCP) nanoparticles of (polystyrene-block-poly(4-vinylpyridine))n (PS-b-P4VP)n with arm numbers of 1, 2, 3, and 4 were prepared by two methods of polymerization-induced self-assembly (PISA) and general self-assembly of block copolymers in the low-polar organic solvent, toluene. The effect of the arm number on the size and/or morphology of the (PS-b-P4VP)n nanoassemblies synthesized by the two methods in toluene and on the polymerization kinetics was investigated in detail. Our results show that in toluene, a low-polar solvent, the topology not only affected the morphology of the BCP nanoparticles prepared by PISA, but also influenced the BCP nanoparticles synthesized through general self-assembly.
Collapse
|
6
|
Wu J, Zhang L, Chen Y, Tan J. Linear and Star Block Copolymer Nanoparticles Prepared by Heterogeneous RAFT Polymerization Using an ω,ω-Heterodifunctional Macro-RAFT Agent. ACS Macro Lett 2022; 11:910-918. [PMID: 35793539 DOI: 10.1021/acsmacrolett.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, an ω,ω-heterodifunctional macromolecular reversible addition-fragmentation chain transfer (macro-RAFT) agent containing two different RAFT end groups was synthesized and employed to mediate aqueous photoinitiated RAFT dispersion polymerization of a methacrylic monomer. Because of the different RAFT controllability of two RAFT end groups toward methacrylic monomers, the RAFT end group with good controllability dominated the polymerization while the other RAFT end group with poor controllability was unreacted, leading to the formation of linear block copolymers. Because of the unique structure of the linear block copolymers, a diverse set of block copolymer nanoparticles with rich RAFT groups at the interface of the hydrophilic corona/the hydrophobic core were successfully prepared. Finally, μ-A(BC)C miktoarm star block copolymer nanoparticles were prepared by RAFT seeded emulsion polymerization of an acrylic monomer, which enables the further morphological control over polymer nanoparticles. We believe that the utilization of an ω,ω-heterodifunctional macro-RAFT agent in heterogeneous RAFT polymerization will offer considerable opportunities for the rational synthesis of well-defined molecular architectures and polymer nanoparticles.
Collapse
Affiliation(s)
- Jiarui Wu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
7
|
Xiong C, Ma B, Qiu T, Li X, Shao X, Guo L. In situ insight into the self-assembly evolution of ABA-type block copolymers in water during the gelation process using infrared spectroscopy and near-infrared spectroscopy. Phys Chem Chem Phys 2022; 24:17004-17013. [PMID: 35775968 DOI: 10.1039/d2cp00822j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a kind of thermo-responsive hydrogel, amphiphilic block copolymers are widely investigated. However, the molecular mechanism of their structural change during the gelation process is still limited. Here, a well-controlled triblock copolymer poly(N,N-dimethylacrylamide)-b-poly(diacetone acrylamide)-b-poly(N,N-dimethylacrylamide) (PDMAA-b-PDAAM-b-PDMAA) was synthesized. Its optical microrheology results suggest a gelation temperature range from 42 to 50 °C, showing a transition from viscosity to elasticity. The morphological transition from spheres to worms occurs. Temperature-dependent IR spectra through two-dimensional correlation spectroscopy (2D-COS) and the Gaussian fitting technique were analyzed to obtain the transition information of the molecular structure within the triblock copolymer. The N-way principal component analysis (NPCA) on the temperature-dependent NIR spectra was performed to understand the molecular interaction between water and the copolymer. The intramolecular hydrogen bonds within the hydrophobic PDAAM block tend to dissociate with temperature, resulting in improved hydration and a relative volume increase of the PDAAM block. The dissociation of intermolecular hydrogen bonds within the PDAAM block was the driving force for the morphological transition. Moreover, the hydrophilic PDMAA block dehydrates with temperature, and three stages can be found. The dehydration rate of the second stage with temperature from 42 to 50 °C was obviously higher than those in the lower (first stage) and higher (third stage) temperature ranges.
Collapse
Affiliation(s)
- Chongwen Xiong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Biao Ma
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Teng Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Longhai Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Yuan B, Huang T, Lv X, Jiang L, Sun X, Zhang Y, Tang J. Bioenhanced Rapid Redox Initiation for RAFT Polymerization in the Air. Macromol Rapid Commun 2022; 43:e2200218. [PMID: 35751146 DOI: 10.1002/marc.202200218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Indexed: 12/17/2022]
Abstract
A well-controlled bioenhanced reversible addition-fragmentation chain transfer (RAFT) in the presence of air is carried out by using glucose oxidase (GOx), glucose, ascorbic acid (Asc acid), and ppm level of hemin. The catalytic concentration of hemin is employed to enhance hydrogen peroxide (H2 O2 )/Asc acid redox initiation, achieving rapid RAFT polymerization. Narrow molecular weight distributions and high monomer conversion (Ð as low as 1.09 at >95% conversion) are achieved within tens of minutes. Several kinds of monomers are used to verify the universal implication of the presented method. The influences of the pH and feed ratio of each component on the polymerization rate are assessed. Besides, a polymerization rate regulation is realized by managing Asc acid addition. This work significantly increases the rate of redox-initiated GOx-deoxygen RAFT polymerization by using simple and green reactants, facilitating the application of RAFT polymerization in areas such as biomedical applications.
Collapse
Affiliation(s)
- Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xueying Sun
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunhe Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Cai W, Yang S, Zhang L, Chen Y, Zhang L, Tan J. Efficient Synthesis and Self-Assembly of Segmented Hyperbranched Block Copolymers via RAFT-Mediated Dispersion Polymerization Using Segmented Hyperbranched Macro-RAFT Agents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Weibin Cai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuaiqi Yang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Lunqiang Zhang
- Shenzhen Newccess Industrial Co., Ltd., Shenzhen 518038, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
10
|
Strategies for preparing hybrid nanomaterials via Polymerization-Induced Self-Assembly. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
12
|
Zhang Q, Wang R, Chen Y, Zhang L, Tan J. Block Copolymer Vesicles with Tunable Membrane Thicknesses and Compositions Prepared by Aqueous Seeded Photoinitiated Polymerization-Induced Self-Assembly at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2699-2710. [PMID: 35176211 DOI: 10.1021/acs.langmuir.1c03430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Block copolymer vesicles with diverse functionalities and intrinsic hollow structures have received considerable attention due to their broad applications in biomedical fields, including drug delivery, bioimaging, theranostics, gene therapy, etc. However, efficient preparation of block copolymer vesicles with tunable membrane thicknesses and compositions under mild conditions is still a challenge. Herein, we report an aqueous seeded photoinitiated polymerization-induced self-assembly (photo-PISA) for the precise preparation of block copolymer vesicles at room temperature. By changing the total degree of polymerization (DP) of the hydrophobic block in seeded photo-PISA, one can easily tune the membrane thickness without compromising the morphology of vesicles. Moreover, by adding different comonomers such as hydrophobic monomers, hydrophilic monomers, and cross-linkers into seeded photo-PISA, vesicles with different compositions could be prepared without compromising the morphology and colloidal stability. Polymerization kinetics show that seeded photo-PISA can skip the step of in situ self-assembly with a short homogeneous polymerization stage being observed. To demonstrate potential biological applications, enzymatic nanoreactors were constructed by loading horseradish peroxidase (HRP) inside vesicles via seeded photo-PISA. The enzymatic properties of these nanoreactors could be easily regulated by changing the membrane thickness and hydrophobicity. It is expected that this method can provide a facile platform for the precise preparation of block copolymer vesicles that may find applications in different fields.
Collapse
Affiliation(s)
- Qichao Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Wang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
13
|
Niu B, Chen Y, Zhang L, Tan J. Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Polym Chem 2022. [DOI: 10.1039/d2py00180b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights recent developments in the preparation of organic–inorganic hybrid nanomaterials via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
14
|
Luo X, Zhang K, Zeng R, Chen Y, Zhang L, Tan J. Segmented Copolymers Synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization Using an Asymmetric Difunctional RAFT Agent and the Utilization in RAFT-Mediated Dispersion Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyi Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Kunlun Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
15
|
|
16
|
Yuan B, Huang T, Wang X, Ding Y, Jiang L, Zhang Y, Tang J. Oxygen-Tolerant RAFT Polymerization Catalyzed by a Recyclable Biomimetic Mineralization Enhanced Biological Cascade System. Macromol Rapid Commun 2021; 43:e2100559. [PMID: 34713523 DOI: 10.1002/marc.202100559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/17/2021] [Indexed: 12/12/2022]
Abstract
An enzyme cascade system including glucose oxidase (GOx) and iron porphyrin (DhHP-6) is encapsulated in a metal-organic framework called zeolitic imidazolate framework-8 (ZIF-8) through one-step facile synthesis. The composite (GOx&DhHP-6@ZIF-8) is then used to initiate oxygen-tolerant reversible addition-fragmentation chain-transfer polymerization for different methacrylate monomers, such as 2-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and poly(ethylene glycol) methyl ether methacrylate (Mn = 500 g mol-1 ). The composite shows the robustness toward solvent and temperatures, all polymerizations using above monomers and catalyzing by GOx&DhHP-6@ZIF-8 exhibits high monomer conversion (>85%) and narrow molar mass dispersity (<1.3). Besides, acrylic and acrylamide monomers such as 2-hydroxyethyl acrylate and N,N-dimethylacrylamide are also carried to demonstrate the broad applicability. Proton nuclear magnetic resonance characterization and chain extension experiments confirm the retaining end groups of the resultant polymers, which is a significant feature of living polymerization. More importantly, the process of recycling the composite through a centrifuge is simplistic, and the composite still maintains similar activity compared to the original composites after five times. This low-cost and easily separated composite catalyst represents a versatile strategy to synthesize well-defined functional polymers suitable for industrial-scale production.
Collapse
Affiliation(s)
- Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghuo Wang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yi Ding
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunhe Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
17
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
18
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. How the Reactive End Group of Macro-RAFT Agent Affects RAFT-Mediated Emulsion Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2021; 42:e2100333. [PMID: 34219313 DOI: 10.1002/marc.202100333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Polymerization-induced self-assembly via reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization is an emerging method in which macro-RAFT agents are chain extended with hydrophobic monomers in water to form block copolymer nano-objects. However, almost all RAFT-mediated emulsion polymerizations are limited to AB diblock copolymers by using monofunctional macro-RAFT agents with non-reactive end groups. In this study, the first investigation on how the reactive end group of macro-RAFT agent affects RAFT-mediated emulsion polymerization is reported. Three macro-RAFT agents with different end groups are synthesized and employed in RAFT-mediated emulsion polymerization. Effects of end groups on morphologies of block copolymer nano-objects and polymerization process are studied. Block copolymer nano-objects prepared by using an asymmetric difunctional macro-RAFT agent can be functionalized by further chain extension on the surface. It is expected that the current study will not only expand the scope of RAFT-mediated emulsion polymerization, but also provide a novel strategy to prepare functional polymer nanoparticles.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
19
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
20
|
Li RY, An ZS. Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2556-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Luo X, Zhao S, Chen Y, Zhang L, Tan J. Switching between Thermal Initiation and Photoinitiation Redirects RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00038] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuhui Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shanzhi Zhao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
22
|
Abstract
3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with rational designs heretofore give evidence of how these printed microrobots are being exploited in the medical, environmental, and other relevant fields. A future outlook on the 3D printing of microrobots is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
23
|
Du Y, Jia S, Chen Y, Zhang L, Tan J. Type I Photoinitiator-Functionalized Block Copolymer Nanoparticles Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly. ACS Macro Lett 2021; 10:297-306. [PMID: 35570791 DOI: 10.1021/acsmacrolett.1c00014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type I photoinitiators have been widely used in UV-vis curing technology for the fabrication of functional polymer materials such as coatings, inks, and adhesives. To overcome the drawbacks of using small molecular type I photoinitiators and expand the potential applications of UV-vis curing technology, attaching type I photoinitiators onto the surface of polymer colloids is an attractive strategy. Here we report a robust strategy for the efficient preparation of type I photoinitiator-functionalized block copolymer nanoparticles with various morphologies via aqueous reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization-induced self-assembly (PISA), in which the photoinitiating ability of the type I photoinitiator end group provides a landscape for further functionalization. These block copolymer nanoparticles could also be used as heterogeneous photoinitiators to generate hydrogels with nanoparticles embedded inside. Significantly, the properties and functionalities of these hydrogels could be further controlled by using different block copolymer nanoparticles. This study provides a robust strategy toward the preparation of type I photoinitiator-functionalized block copolymer nanoparticles with the capacity to be modified with varying functionalities.
Collapse
Affiliation(s)
- Yang Du
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Jia
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
24
|
Huang J, Liu D, Chen Y, Zhang L, Tan J. Preparation of Block Copolymer Nano-Objects with Embedded β-Ketoester Functional Groups by Photoinitiated RAFT Dispersion Polymerization. Macromol Rapid Commun 2021; 42:e2000720. [PMID: 33538048 DOI: 10.1002/marc.202000720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Herein, a photoinitiated reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-(acetoacetoxy)ethyl methacrylate (AEMA) in ethanol/water at room temperature for in situ preparation of β-ketoester-functionalized block copolymer nano-objects is reported. AEMA is also copolymerized with isobornyl methacrylate (IBOMA) to improve the colloidal stability of PIBOMA-based block copolymer nano-objects prepared by photoinitiated RAFT dispersion polymerization at low temperatures. A series of P(IBOMA-stat-AEMA)-based block copolymer nano-objects are prepared by changing reaction parameters. Finally, lanthanide-doped block copolymer nano-objects with luminescent and magnetic properties are also prepared based on the complexation of various lanthanide ions with the β-ketoester group. It is expected that the current study will provide a facile platform for the in situ preparation of β-ketoester-functionalized block copolymer nano-objects with different morphologies for specific applications.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
25
|
Cai WB, Liu DD, Chen Y, Zhang L, Tan JB. Enzyme-assisted Photoinitiated Polymerization-induced Self-assembly in Continuous Flow Reactors with Oxygen Tolerance. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2533-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP). CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2529-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Yang H, Lu Z, Fu X, Li Q, Xiao L, Zhao R, Zhao Y, Hou L. Multipath oxygen-mediated PET-RAFT polymerization by a conjugated organic polymer photocatalyst under red LED irradiation. Polym Chem 2021. [DOI: 10.1039/d1py01058a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TCPP-DMTA-COP has been synthesized and serves as a heterogeneous photocatalyst in a multipath aerobic-mediated reductive quenching pathway (O-RQP) for a PET-RAFT polymerization process.
Collapse
Affiliation(s)
- Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Zhen Lu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Rukai Zhao
- School of Materials Science and Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
28
|
Abstract
This review summarizes the recent non-thermal initiation methods in RAFT mediated polymerization-induced self-assembly (PISA), including photo-, redox/oscillatory reaction-, enzyme- and ultrasound wave-initiation.
Collapse
Affiliation(s)
- Nankai An
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| |
Collapse
|
29
|
Ng G, Jung K, Li J, Wu C, Zhang L, Boyer C. Screening RAFT agents and photocatalysts to mediate PET-RAFT polymerization using a high throughput approach. Polym Chem 2021. [DOI: 10.1039/d1py01258d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a high throughput approach for the screening of RAFT agents and photocatalysts to mediate photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization.
Collapse
Affiliation(s)
- Gervase Ng
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kenward Jung
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chenyu Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Liwen Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Xu S, Corrigan N, Boyer C. Forced gradient copolymerisation: a simplified approach for polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00889c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel and versatile gradient copolymerisation approach to simplify polymeric nanoparticle synthesis through polymerisation-induced self-assembly (PISA) is reported.
Collapse
Affiliation(s)
- Sihao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
31
|
Yee EH, Kim S, Sikes HD. Experimental validation of eosin-mediated photo-redox polymerization mechanism and implications for signal amplification applications. Polym Chem 2021. [DOI: 10.1039/d1py00413a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
When eosin-mediated, photo-redox polymerization is used to amplify signals in biosensing, oxygen has dual, opposing roles.
Collapse
Affiliation(s)
- Emma H. Yee
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Seunghyeon Kim
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Hadley D. Sikes
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Program in Polymers and Soft Matter
| |
Collapse
|
32
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
33
|
Liu D, Chen Y, Zhang L, Tan J. Efficient Preparation of Branched Block Copolymer Assemblies by Photoinitiated RAFT Self-Condensing Vinyl Dispersion Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
34
|
Zhang Q, Zeng R, Zhang Y, Chen Y, Zhang L, Tan J. Two Polymersome Evolution Pathways in One Polymerization-Induced Self-Assembly (PISA) System. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qichao Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxuan Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
35
|
Zhang L, Xie L, Xu S, Kuchel RP, Dai Y, Jung K, Boyer C. Dual Role of Doxorubicin for Photopolymerization and Therapy. Biomacromolecules 2020; 21:3887-3897. [PMID: 32786533 DOI: 10.1021/acs.biomac.0c01025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we report dual roles for doxorubicin (DOX), which can serve as an antitumor drug as well as a cocatalyst for a photoliving radical polymerization. DOX enhances the polymerization rates of a broad range of monomers, including acrylamide, acrylate, and methacrylates, allowing for high monomer conversion and well-defined molecular weights under irradiation with a blue light-emitting diode light (λmax = 485 nm, 2.2 mW/cm2). Utilizing this property, the photopolymerization of N,N-diethylacrylamide was performed in the presence of a poly(oligo(ethylene glycol) methyl ether acrylate) macroreversible addition-fragmentation chain transfer (macroRAFT) agent to prepare polymeric nanoparticles via aqueous polymerization-induced self-assembly (PISA). By varying the monomer:macroRAFT ratio, spherical polymeric nanoparticles of various diameters could be produced. Most notably, DOX was successfully encapsulated into the hydrophobic core of nanoparticles during the PISA process. The DOX-loaded nanoparticles were effectively uptaken into tumor cells and significantly inhibited the proliferation of tumor cells, demonstrating that the DOX bioactivity was not affected by the polymerization reaction.
Collapse
Affiliation(s)
- Liwen Zhang
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lisi Xie
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Sihao Xu
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Kenward Jung
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
36
|
Tran TN, Piogé S, Fontaine L, Pascual S. Hydrogen‐Bonding UCST‐Thermosensitive Nanogels by Direct Photo‐RAFT Polymerization‐Induced Self‐Assembly in Aqueous Dispersion. Macromol Rapid Commun 2020; 41:e2000203. [DOI: 10.1002/marc.202000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Nga Tran
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Sandie Piogé
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| |
Collapse
|
37
|
Quan Q, Wen H, Han S, Wang Z, Shao Z, Chen M. Fluorous-Core Nanoparticle-Embedded Hydrogel Synthesized via Tandem Photo-Controlled Radical Polymerization: Facilitating the Separation of Perfluorinated Alkyl Substances from Water. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24319-24327. [PMID: 32365289 DOI: 10.1021/acsami.0c04646] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are broadly used as surfactants and water/oil repellents for many decades. However, they are toxic, environmental persistence, and widely detected in water sources. In this work, we developed a fluorous-core nanoparticle-embedded hydrogel (FCH) synthesized by the metal-free tandem photocontrolled radical polymerization under visible-light irradiation. With the FCH material, the scope of absorbable PFASs has been expanded to neutral, anionic, cationic and zwitterionic PFASs with the same adsorbent for the first time. The fluorous nanoparticles exhibited strong and selective affinity toward PFASs without being dramatically influenced by pH levels and background ions, enabling efficient removing of PFASs at high to environmentally relevant concentrations (10 mg/L to 1 μg/L). Furthermore, the FCH network has shown good mechanical performance, facilitating the separation, regeneration, and recycling of adsorbent for multiple runs. These results demonstrate the promise of the FCH material for PFASs separation and adsorbent recycling toward sustainable environment.
Collapse
Affiliation(s)
- Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Huijuan Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Shantao Han
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
38
|
Liu C, Hong CY, Pan CY. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym Chem 2020. [DOI: 10.1039/d0py00455c] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of controlled/“living” polymerization greatly stimulated the prosperity of the fabrication and application of block copolymer nano-objects.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
39
|
Zeng R, Chen Y, Zhang L, Tan J. Uncontrolled polymerization that occurred during photoinitiated RAFT dispersion polymerization of acrylic monomers promotes the formation of uniform raspberry-like polymer particles. Polym Chem 2020. [DOI: 10.1039/d0py00678e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Uniform raspberry-like polymer particles are prepared by a different type of photoinitiated RAFT dispersion polymerization.
Collapse
Affiliation(s)
- Ruiming Zeng
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Guangzhou 510006
- China
| | - Li Zhang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|