1
|
Tian D, Liu X, Li J, Wang Z, Cai X, Chen J, Jin H, Li B, Lou Z. Constructing High-Active Surface of Plasmonic Tungsten Oxide for Photocatalytic Alcohol Dehydration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404738. [PMID: 38695468 DOI: 10.1002/adma.202404738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 07/26/2024]
Abstract
Plasmonic semiconductors with broad spectral response hold significant promise for sustainable solar energy utilization. However, the surface inertness limits the photocatalytic activity. Herein, a novel approach is proposed to improve the body crystallinity and increase the surface oxygen vacancies of plasmonic tungsten oxide by the combination of hydrochloric acid (HCl) regulation and light irradiation, which can promote the adsorption of tert-butyl alcohol (TBA) on plasmonic tungsten oxide and overcome the hindrance of the surface depletion layer in photocatalytic alcohol dehydration. Additionally, this process can concentrate electrons for strong plasmonic electron oscillation on the near surface, facilitating rapid electron transfer within the adsorbed TBA molecules for C-O bond cleavage. As a result, the activation barrier for TBA dehydration is significantly reduced by 93% to 6.0 kJ mol-1, much lower than that of thermocatalysis (91 kJ mol-1). Therefore, an optimal isobutylene generation rate of 1.8 mol g-1 h-1 (selectivity of 99.9%) is achieved. A small flow reaction system is further constructed, which shows an isobutylene generation rate of 12 mmol h-1 under natural sunlight irradiation. This work highlights the potential of plasmonic semiconductors for efficient photocatalytic alcohol dehydration, thereby promoting the sustainable utilization of solar energy.
Collapse
Affiliation(s)
- Dehua Tian
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Xiaolei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Jiangyi Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Hao Jin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
2
|
Xia P, Shao H, He A. Excellent Oxygen Barrier Property of Unfilled Natural Rubber/ trans-Butadiene-co-Isoprene Rubber Vulcanizates under the Synergistic Effect of Crosslinking Density and Crystallization. Polymers (Basel) 2024; 16:345. [PMID: 38337234 DOI: 10.3390/polym16030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The thermo-oxidative aging of rubber products is inevitable during their use and leads to product failure and can even endanger safety. Oxygen is an important factor that cannot be ignored during the thermo-oxidative aging process. Thus, the gas barrier property of rubber products is of significant concern. In this work, a strategy of crystallizing rubber in unfilled rubber composites was designed by firstly constructing a dual synergistic mechanism of crosslinking density and crystallization on the oxygen barrier properties. As a crystallizable polymer, trans-butadiene-co-isoprene rubber (TBIR) shows dendritic fibril crystals or spherulites in natural rubber (NR)/TBIR vulcanizates. Meanwhile, the vulcanizates containing TBIR have a higher crosslinking density than NR vulcanizates. These TBIR-rich crystals and high-crosslinking-density structures are distributed in vulcanizates like continuous islands. Contrary to what has been reported in the literature, the decrease in oxygen permeability of NR/TBIR is not only due to the high crosslinking density and free volume of the polymer matrix, but more importantly, the spherulites of TBIR play a role in blocking and prolonging the oxygen diffusion path during the diffusion of oxygen in the polymer composites. We propose that the compatible crystalline polymer can replace the lamellar filler, play the role of the oxygen barrier in rubber composites, reduce the diffusion and dissolution of oxygen, and achieve the effect of improving the thermo-oxidative aging property of the rubber composite. Future research will follow the morphology evolution of TBIR crystals, their crosslinking structure and density, and interactions between TBIR and NR on the oxygen barrier and thermo-oxidative aging property.
Collapse
Affiliation(s)
- Pengcheng Xia
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huafeng Shao
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao 266042, China
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Sun T, Bian J, Wang Y, Hu J, Yun X, Chen E, Dong T. One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms ( Agaricus bisporus) Preservation. Foods 2023; 12:foods12030586. [PMID: 36766115 PMCID: PMC9914554 DOI: 10.3390/foods12030586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Proper packaging can extend the shelf life and maintain the quality of mushrooms during storage. The purpose of this study is to investigate the preservation of Agaricus bisporus using copolymer-modified poly (L-lactide-co-butylene fumarate) and poly (L-lactide-co-glycolic acid) (PLBF and PLGA) packaging. Shelf life and quality were evaluated over 15 days of storage of Agaricus bisporus at 4 ± 1 °C and 90% relative humidity, including weight loss, browning index (BI), total phenolics (TP), ascorbic acid (AA), malondialdehyde content (MDA), electrolyte leakage rate (EC), and superoxide dismutase (SOD) and catalase (CAT). The results showed that mushrooms packaged in PLBF films exhibited better retention in BI, TP, and AA than those with PLLA, PLGA, or polyethylene (PE) films. They can reduce the rate of weight loss, EC, and MDA, which in turn increases the activity of SOD and CAT. PLBF and PLGA have substantially improved flexibility in comparison with PLLA. They also significantly reduced oxygen (O2) and carbon dioxide (CO2) permeability and changed the gas permeability ratio. These positive effects resulted in the effective restriction of O2 and CO2 in these packages, extending the post-harvest storage period of white mushrooms.
Collapse
Affiliation(s)
- Tao Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Junxia Bian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Yangyang Wang
- Hohhot Huimin District Center for Disease Control and Prevention, Hohhot 010030, China
| | - Jian Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Eerdunbayaer Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010010, China
- Correspondence:
| |
Collapse
|
4
|
Marano S, Laudadio E, Minnelli C, Stipa P. Tailoring the Barrier Properties of PLA: A State-of-the-Art Review for Food Packaging Applications. Polymers (Basel) 2022; 14:1626. [PMID: 35458376 PMCID: PMC9029979 DOI: 10.3390/polym14081626] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
It is now well recognized that the production of petroleum-based packaging materials has created serious ecological problems for the environment due to their resistance to biodegradation. In this context, substantial research efforts have been made to promote the use of biodegradable films as sustainable alternatives to conventionally used packaging materials. Among several biopolymers, poly(lactide) (PLA) has found early application in the food industry thanks to its promising properties and is currently one of the most industrially produced bioplastics. However, more efforts are needed to enhance its performance and expand its applicability in this field, as packaging materials need to meet precise functional requirements such as suitable thermal, mechanical, and gas barrier properties. In particular, improving the mass transfer properties of materials to water vapor, oxygen, and/or carbon dioxide plays a very important role in maintaining food quality and safety, as the rate of typical food degradation reactions (i.e., oxidation, microbial development, and physical reactions) can be greatly reduced. Since most reviews dealing with the properties of PLA have mainly focused on strategies to improve its thermal and mechanical properties, this work aims to review relevant strategies to tailor the barrier properties of PLA-based materials, with the ultimate goal of providing a general guide for the design of PLA-based packaging materials with the desired mass transfer properties.
Collapse
Affiliation(s)
- Stefania Marano
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Pierluigi Stipa
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; (E.L.); (P.S.)
| |
Collapse
|
5
|
Turton J, Worrall S, Musa MS, Milani AH, Yao Y, Shaw P, Ring D, Saunders BR. Effect of methacrylic acid and pendant vinyl groups on the mechanical properties of highly stretchable core–shell nanostructured films deposited from water. Polym Chem 2021. [DOI: 10.1039/d0py00971g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanical properties of these highly stretchable, water deposited elastomers can be tuned by varying MAA content and vinyl functionalisation.
Collapse
Affiliation(s)
- James Turton
- Department of Materials
- MSS Tower
- The University of Manchester
- Manchester
- U.K
| | - Stephen Worrall
- Aston Institute of Materials Research
- School of Engineering and Applied Science
- Aston University
- Birmingham
- U.K
| | | | - Amir H. Milani
- Department of Materials
- MSS Tower
- The University of Manchester
- Manchester
- U.K
| | - Yichao Yao
- Department of Materials
- MSS Tower
- The University of Manchester
- Manchester
- U.K
| | | | | | - Brian R. Saunders
- Department of Materials
- MSS Tower
- The University of Manchester
- Manchester
- U.K
| |
Collapse
|