1
|
Shatz-Binder W, Azumaya CM, Leonard B, Vuong I, Sudhamsu J, Rohou A, Liu P, Sandoval W, Bol K, Izadi S, Holder PG, Blanchette C, Perozzo R, Kelley RF, Kalia Y. Adapting Ferritin, a Naturally Occurring Protein Cage, to Modulate Intrinsic Agonism of OX40. Bioconjug Chem 2024; 35:593-603. [PMID: 38592684 PMCID: PMC11099885 DOI: 10.1021/acs.bioconjchem.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.
Collapse
Affiliation(s)
- Whitney Shatz-Binder
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
- Pharmaceutical
Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Caleigh M. Azumaya
- Structural
Biology, Genentech Inc., South San Francisco, California 94080, United States
| | - Brandon Leonard
- Antibody
Engineering, Genentech Inc., South San Francisco, California 94080, United States
| | - Ivan Vuong
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Jawahar Sudhamsu
- Structural
Biology, Genentech Inc., South San Francisco, California 94080, United States
| | - Alexis Rohou
- Structural
Biology, Genentech Inc., South San Francisco, California 94080, United States
| | - Peter Liu
- Microchemistry,
Proteomics and Lipidomics, Genentech Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Microchemistry,
Proteomics and Lipidomics, Genentech Inc., South San Francisco, California 94080, United States
| | - Karenna Bol
- Pharmaceutical
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
- Business
and Program Management, Genentech Inc., South San Francisco, California 94080, United States
| | - Saeed Izadi
- Pharmaceutical
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Patrick G. Holder
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Craig Blanchette
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Remo Perozzo
- Pharmaceutical
Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Robert F. Kelley
- Pharmaceutical
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Yogeshvar Kalia
- Pharmaceutical
Sciences, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
2
|
Xia J, Gao G, Zhang C, Ying J, Li J. Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. Eur J Pharm Sci 2023; 185:106422. [PMID: 36906110 DOI: 10.1016/j.ejps.2023.106422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity have been considered epidemics and threats to public health worldwide. Exendin-4 (Ex), a GLP-1R agonist, has potential for treating T2DM and obesity. However, Ex has a half-life of only 2.4 h in humans and needs to be administered twice daily, which hampers its clinical application. In this study, we synthesized four new GLP-1R agonists by genetically fusing Ex to the N-terminus of HSA-binding ankyrin repeat proteins (DARPins) via linkers of different lengths, denoted as Ex-DARPin-GSx fusion proteins (x = 0, 1, 2, and 3). The Ex-DARPin fusion proteins were substantially stable, resulting in incomplete denaturation even at 80 °C. The in vitro bioactivity results demonstrated that Ex-DARPin fusion proteins could bind to HSA and activate GLP-1R. The Ex-DARPin fusion proteins had a comparable half-life (29-32 h), which is much longer than that of native Ex (0.5 h in rats). Subcutaneous injection of 25 nmol/kg Ex-DARPin fusion protein normalized blood glucose (BG) levels for at least 72 h in mice. The Ex-DARPin fusion proteins, injected at 25 nmol/kg every three days, significantly lowered BG, inhibited food consumption, and reduced body weight (BW) for 30 days in STZ-induced diabetic mice. Histological analysis of pancreatic tissues using H&E staining revealed that Ex-DARPin fusion proteins significantly improved the survival of pancreatic islets in diabetic mice. The differences in in vivo bioactivity of fusion proteins with different linker lengths were not significant. According to the findings in this study, long-acting Ex-DARPin fusion proteins designed by us hold promise for further development as antidiabetic and antiobesity therapeutic agents. Our findings also indicate that DARPins are a universal platform for generating long-acting therapeutic proteins via genetic fusion, thus broadening the application scope of DARPins.
Collapse
Affiliation(s)
- Jinying Xia
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guosheng Gao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China; Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingjing Ying
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
3
|
Hu F, Deng C, Zhou Y, Liu Y, Zhang T, Zhang P, Zhao Z, Miao H, Zheng W, Zhang W, Wang M, Ma X. Multistage targeting and dual inhibiting strategies based on bioengineered tumor matrix microenvironment‐mediated protein nanocages for enhancing cancer biotherapy. Bioeng Transl Med 2022; 7:e10290. [PMID: 35600646 PMCID: PMC9115700 DOI: 10.1002/btm2.10290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Regulation of the apoptotic pathway plays a critical role in inducing tumor cell death and circumventing drug resistance. Survivin protein is the strongest inhibitor of apoptosis found so far. It is highly expressed in several cancers and is a promising target for cancer therapy. However, clinical applications are limited by incomplete inhibition of survivin expression. Here, we present a novel strategy that extended the release of YM155 (an effective survivin inhibitor that works by inhibiting the activity of survivin promoter) and TATm‐survivin (T34A) (TmSm) protein (survivin protein mutant with penetrating peptide, a potential anticancer protein therapeutic) via tumor matrix microenvironment‐mediated ferritin heavy chain nanocages (FTH1 NCs), enabling significant inhibition of survivin activity at both transcript and protein levels. FTS (FTH1‐matrix metalloproteinase‐2‐TmSm)/YM155 NC synthesis was easily scaled up, and these NCs could sequentially release TmSm protein through matrix metalloproteinase‐2 and promote YM155 to enter the nucleus via transferrin receptor 1 (TfR1) binding, which increased the cytotoxicity and apoptosis of Capan‐2 and A549 cells compared to that with individual drugs. Moreover, FTS/YM155 NCs enhanced drug accumulation at tumor sites and had a higher tumor inhibition rate (88.86%) than the compounds alone in A549 tumor‐bearing mice. In addition, FTS/YM155 NCs exerted significant survivin downregulation (4.43‐fold) and caspase‐3 upregulation (4.31‐fold) and showed better therapeutic outcomes without inducing organ injury, which highlights their promising future clinical application in precision therapy. This tumor microenvironment‐responsive platform could be harnessed to develop an effective therapy via multilevel inhibition of cancer targets.
Collapse
Affiliation(s)
- Fabiao Hu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Changping Deng
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yiwen Zhou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Tong Zhang
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Peiwen Zhang
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Zhangting Zhao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Hui Miao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Wenliang Zhang
- Center of Translational Biomedical Research University of North Carolina at Greensboro Greensboro North Carolina USA
| | - Meiyan Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology, Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical, Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
4
|
Yin S, Zhang B, Lin J, Liu Y, Su Z, Bi J. Development of purification process for dual-function recombinant human heavy-chain ferritin by the investigation of genetic modification impact on conformation. Eng Life Sci 2021; 21:630-642. [PMID: 34690634 PMCID: PMC8518560 DOI: 10.1002/elsc.202000105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Ferritin is a promising drug delivery platform and has been functionalized through genetic modifications. This work has designed and expressed a dual-functional engineered human heavy-chain ferritin (HFn) with the inserted functional peptide PAS and RGDK to extend half-life and improve tumor targeted drug delivery. A facile and cost-effective two-step purification pathway for recombinant HFn was developed. The genetic modification was found to affect HFn conformation, and therefore varied the purification performance. Heat-acid precipitation followed by butyl fast flow hydrophobic interaction chromatography (HIC) has been developed to purify HFn and modified HFns. Nucleic acid removal reached above 99.8% for HFn and modified HFns. However, HFn purity reached above 95% and recovery yield (overall) above 90%, compared with modified HFns purity above 82% and recovery yield (overall) above 58%. It is interesting to find that the inserted functional peptides significantly changed the molecule conformation, where a putative turnover of the E-helix with the inserted functional peptides formed a "flop" conformation, in contrast with the "flip" conformation of HFn. It could be the cause of fragile stability of modified HFns, and therefore less tolerant to heat and acid condition, observed by the lower recovery yield in heat-acid precipitation.
Collapse
Affiliation(s)
- Shuang Yin
- School of Chemical Engineering & Advanced MaterialsFaculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideAustralia
| | - Bingyang Zhang
- School of Chemical Engineering & Advanced MaterialsFaculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideAustralia
| | - Jianying Lin
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanP. R. China
| | - Yongdong Liu
- State Key Laboratory of Biochemistry EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemistry EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced MaterialsFaculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideAustralia
| |
Collapse
|
5
|
Tan H, Su W, Zhang W, Zhang J, Sattler M, Zou P. Generation of novel long-acting GLP-1R agonists using DARPins as a scaffold. Int J Pharm 2021; 607:121043. [PMID: 34450223 DOI: 10.1016/j.ijpharm.2021.121043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) has been considered to be a promising peptide for treatment of type 2 diabetes mellitus (T2DM). However, the extremely short half-life (minutes) of native GLP-1 limits its clinical application potential. Here, we designed two GLP-1 analogues by genetic fusion of GLP-1 to one or two tandem human serum albumin-binding designed ankyrin repeat proteins (DARPins), denoted as GLP-DARPin or GLP-2DARPin. The two DARPin-fusion GLP-1 proteins were expressed in E. coli and purified, followed by measurements of their bioactivities and half-lives in mice. The results revealed that the half-life of GLP-2DARPin, binding two HSA molecules, was approximately 3-fold longer than GLP-DARPin (52.3 h versus 18.0 h). In contrast, the bioactivity results demonstrated that the blood glucose-lowering effect of GLP-DARPin was more potent than that of GLP-2DARPin. The oral glucose tolerance tests indicated that blood glucose levels were significantly reduced for at least 48 h by GLP-DARPin, but were reduced for only 24 h by GLP-2DARPin. Injected once every two days, GLP-DARPin substantially reduced blood glucose levels in streptozotocin (STZ)-induced diabetic mice to the same levels as normal mice. During the treatment course, GLP-DARPin significantly reduced the food intake and body weight of diabetic mice up to approximately 17% compared with the control group. A histological analysis revealed that GLP-DARPin alleviated islet loss in diabetic mice. These findings suggest that long-acting GLP-DARPin holds great potential for further development into drugs for the treatment of T2DM and obesity. Meanwhile, our data indicate that albumin-binding DARPins can be used as a universal scaffold to improve the pharmacokinetic profiles and pharmacological activities of therapeutic peptides and proteins.
Collapse
Affiliation(s)
- Huanbo Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wencheng Su
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenyu Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jie Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Michael Sattler
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Bavarian NMR Centre, Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Bavarian NMR Centre, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
6
|
Tan H, Su W, Zhang W, Zhang J, Sattler M, Zou P. Albumin-binding domain extends half-life of glucagon-like peptide-1. Eur J Pharmacol 2021; 890:173650. [PMID: 33049303 DOI: 10.1016/j.ejphar.2020.173650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is considered to be a promising peptide for the treatment of type 2 diabetes mellitus (T2DM). However, the extremely short half-life of GLP-1 limits its clinical application. Albumin-binding domain (ABD) with high affinity for human serum albumin (HSA) has been used widely for half-life extension of therapeutic peptides and proteins. In the present study, novel GLP-1 receptor agonists were designed by genetic fusion of GLP-1 to three kinds of ABDs with different affinities for HSA: GA3, ABD035 and ABDCon. The bioactivities and half-lives of ABD-fusion GLP-1 proteins with different types and lengths of linkers were investigated in vitro and in vivo. The results demonstrated that ABD-fusion GLP-1 proteins could bind to HSA with high affinity. The blood glucose-lowering effect of GLP-1 was significantly improved and sustained by fusion to ABD. Meanwhile, the fusion proteins significantly inhibited food intake, which was beneficial for T2DM and obesity treatment. The half-life of GLP-1 was substantially extended by virtue of ABD. The in vivo results also showed that a longer linker inserted between GLP-1 and ABD resulted in a higher blood glucose-lowering effect. The fusion proteins generated by fusion of GLP-1 to GA3, ABD035 and ABDCon exhibited similar bioactivities and pharmacokinetics in vivo. These findings demonstrate that ABD-fusion GLP-1 proteins retain the bioactivities of natural GLP-1 and can be further developed for T2DM treatment and weight loss. It also indicates that the ABD-fusion strategy can be generally applicable to any peptide or protein, to improve pharmacodynamic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Huanbo Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wencheng Su
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenyu Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jie Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Michael Sattler
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|