1
|
Lu X, Zhu Y, Deng X, Kong F, Xi C, Luo Q, Zhu X. Development of a Supermolecular Radionuclide-Drug Conjugate System for Integrated Radiotheranostics for Non-small Cell Lung Cancer. J Med Chem 2024; 67:11152-11167. [PMID: 38896797 DOI: 10.1021/acs.jmedchem.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Radionuclide-drug conjugates (RDCs) designed from small molecule or nanoplatform shows complementary characteristics. We constructed a new RDC system with integrated merits of small molecule and nanoplatform-based RDCs. Erlotinib was labeled with 131I to construct the bulk of RDC (131I-ER). Floxuridine was mixed with 131I-ER to develop a hydrogen bond-driving supermolecular RDC system (131I-ER-Fu NPs). The carrier-free 131I-ER-Fu NPs supermolecule not only demonstrated integrated merits of small molecule and nanoplatform-based RDC, including clear structure definition, stable quality control, prolonged circulation lifetime, enhanced tumor specificity and retention, and rapidly nontarget clearance, but also exhibited low biological toxicity and stronger antitumor effects. In vivo imaging also revealed its application for tumor localization of nonsmall cell lung cancer (NSCLC) and screening of patients suitable for epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. We considered that 131I-ER-Fu NPs showed potentials as an integrated platform for the radiotheranostics of NSCLC.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Yunyun Zhu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xiaohui Deng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2023; 16:14. [PMID: 38276492 PMCID: PMC10821275 DOI: 10.3390/pharmaceutics16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.
Collapse
Affiliation(s)
- Doaa Sayed Nady
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
3
|
Bentivoglio V, Nayak P, Varani M, Lauri C, Signore A. Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use. Biomolecules 2023; 13:1241. [PMID: 37627307 PMCID: PMC10452659 DOI: 10.3390/biom13081241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Following previously published systematic reviews on the diagnostic use of nanoparticles (NPs), in this manuscript, we report published methods for radiolabeling nanoparticles with therapeutic alpha-emitting, beta-emitting, or Auger's electron-emitting isotopes. After analyzing 234 papers, we found that different methods were used with the same isotope and the same type of nanoparticle. The most common type of nanoparticles used are the PLGA and PAMAM nanoparticles, and the most commonly used therapeutic isotope is 177Lu. Regarding labeling methods, the direct encapsulation of the isotope resulted in the most reliable and reproducible technique. Radiolabeled nanoparticles show promising results in metastatic breast and lung cancer, although this field of research needs more clinical studies, mainly on the comparison of nanoparticles with chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (V.B.); (P.N.); (M.V.); (C.L.)
| |
Collapse
|
4
|
Shadmani N, Makvandi P, Parsa M, Azadi A, Nedaei K, Mozafari N, Poursina N, Mattoli V, Tay FR, Maleki A, Hamidi M. Enhancing Methotrexate Delivery in the Brain by Mesoporous Silica Nanoparticles Functionalized with Cell-Penetrating Peptide using in Vivo and ex Vivo Monitoring. Mol Pharm 2023; 20:1531-1548. [PMID: 36763486 DOI: 10.1021/acs.molpharmaceut.2c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.
Collapse
Affiliation(s)
- Nasim Shadmani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, EdinburghEH9 3JL, U.K
| | - Maliheh Parsa
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Narges Poursina
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Virgilio Mattoli
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, Georgia30912, United States
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran.,Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| |
Collapse
|
5
|
Kamil Mohammad Al-Mosawi A, Bahrami AR, Nekooei S, Saljooghi AS, Matin MM. Using magnetic mesoporous silica nanoparticles armed with EpCAM aptamer as an efficient platform for specific delivery of 5-fluorouracil to colorectal cancer cells. Front Bioeng Biotechnol 2023; 10:1095837. [PMID: 36686226 PMCID: PMC9853966 DOI: 10.3389/fbioe.2022.1095837] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Theranostic nanoparticles with both imaging and therapeutic capacities are highly promising in successful diagnosis and treatment of advanced cancers. Methods: Here, we developed magnetic mesoporous silica nanoparticles (MSNs) loaded with 5-fluorouracil (5-FU) and surface-decorated with polyethylene glycol (PEG), and epithelial cell adhesion molecule (EpCAM) aptamer (Apt) for controlled release of 5-FU and targeted treatment of colorectal cancer (CRC) both in vitro and in vivo. In this system, Au NPs are conjugated onto the exterior surface of MSNs as a gatekeeper for intelligent release of the anti-cancer drug at acidic conditions. Results: Nanocarriers were prepared with a final size diameter of 78 nm, the surface area and pore size of SPION-MSNs were calculated as 636 m2g-1, and 3 nm based on the BET analysis. The release of 5-FU from nanocarriers was pH-dependent, with an initial rapid release (within 6 h) followed by a sustained release for 96 h at pH 5.4. Tracking the cellular uptake by flow cytometry technique illustrated more efficient and higher uptake of targeted nanocarriers in HT-29 cells compared with non-targeted formula. In vitro results demonstrated that nanocarriers inhibited the growth of cancer cells via apoptosis induction. Furthermore, the targeted NPs could significantly reduce tumor growth in immunocompromised C57BL/6 mice bearing HT-29 tumors, similar to those injected with free 5-FU, while inducing less side effects. Conclusion: These findings suggest that application of Apt-PEG-Au-NPs@5-FU represents a promising theranostic platform for EpCAM-positive CRC cells, although further experiments are required before it can be practiced in the clinic.
Collapse
Affiliation(s)
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran,*Correspondence: Maryam M. Matin, ; Amir Sh. Saljooghi,
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran,Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Mashhad, Iran,*Correspondence: Maryam M. Matin, ; Amir Sh. Saljooghi,
| |
Collapse
|
6
|
Zha Z, Miao Y, Tang H, Herrera-Balandrano DD, Yin H, Wang SY. Heparosan-based self-assembled nanocarrier for zinc(II) phthalocyanine for use in photodynamic cancer therapy. Int J Biol Macromol 2022; 219:31-43. [PMID: 35926671 DOI: 10.1016/j.ijbiomac.2022.07.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
Zinc(II) phthalocyanine (ZnPc) is a promising photosensitizer in photodynamic therapy (PDT) for melanoma treatment. However, the poor solubility of ZnPc limits its application. To overcome this limitation, heparosan (HP)-based nanoparticles were prepared by anchoring the l-lysine-linked α-linolenic acid branch to the carboxylic acid group to produce amphiphilic conjugates named heparosan with an l-lysine-linked α-linolenic acid branch (HLA). HLA conjugates could self-assemble into spherical nanoparticles in aqueous media and encapsulate ZnPc to form HLA-ZnPc nanoparticles. The cellular uptake of ZnPc could be improved by HLA carriers. These nanoparticles presented excellent photodynamic-mediated toxicity against mouse melanoma cells (B16) by markedly upregulating the intracellular reactive oxygen species (ROS) levels while showing no cytotoxicity to either B16 or normal cells (L02 and HK-2 cells) in the dark. Furthermore, HLA-ZnPc displayed excellent stability in both powder and Roswell Park Memorial Institute (RPMI) 1640 medium, indicating its promise for application in drug delivery and PDT. These results revealed a strategy for HP-based enhancement of ZnPc in PDT efficacy.
Collapse
Affiliation(s)
- Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yinghua Miao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huiling Tang
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huaian 223003, People's Republic of China
| | | | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Su-Yan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
7
|
Li Y, Deng G, Hu X, Li C, Wang X, Zhu Q, Zheng K, Xiong W, Wu H. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine (Lond) 2022; 17:1253-1279. [PMID: 36250937 DOI: 10.2217/nnm-2022-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted drug-delivery systems are a growing research topic in tumor treatment. In recent years, mesoporous silica nanoparticles (MSNs) have been extensively studied and applied in noninvasive and biocompatible drug-delivery systems for tumor therapy due to their outstanding advantages, which include high surface area, large pore volume, tunable pore size, easy surface modification and stable framework. The advances in the application of MSNs for anticancer drug targeting are covered and highlighted in this review, and the challenges and prospects of MSN-based targeted drug-delivery systems are discussed. This review provides new insights for researchers interested in targeted drug-delivery systems against cancer.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guoxing Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.,School of Pharmacy, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianlong Hu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| |
Collapse
|
8
|
Slapak EJ, el Mandili M, Bijlsma MF, Spek CA. Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview. Pharmaceutics 2022; 14:390. [PMID: 35214121 PMCID: PMC8876630 DOI: 10.3390/pharmaceutics14020390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is a devastating disease with the worst outcome of any human cancer. Despite significant improvements in cancer treatment in general, little progress has been made in pancreatic cancer (PDAC), resulting in an overall 5-year survival rate of less than 10%. This dismal prognosis can be attributed to the limited clinical efficacy of systemic chemotherapy due to its high toxicity and consequent dose reductions. Targeted delivery of chemotherapeutic drugs to PDAC cells without affecting healthy non-tumor cells will largely reduce collateral toxicity leading to reduced morbidity and an increased number of PDAC patients eligible for chemotherapy treatment. To achieve targeted delivery in PDAC, several strategies have been explored over the last years, and especially the use of mesoporous silica nanoparticles (MSNs) seem an attractive approach. MSNs show high biocompatibility, are relatively easy to surface modify, and the porous structure of MSNs enables high drug-loading capacity. In the current systematic review, we explore the suitability of MSN-based targeted therapies in the setting of PDAC. We provide an extensive overview of MSN-formulations employed in preclinical PDAC models and conclude that MSN-based tumor-targeting strategies may indeed hold therapeutic potential for PDAC, although true clinical translation has lagged behind.
Collapse
Affiliation(s)
- Etienne J. Slapak
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Mouad el Mandili
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
| |
Collapse
|
9
|
Zeinali S, Tuncel A, Yüzer A, Yurt F. Imaging and detection of cell apoptosis byIn vitrophotodynamic therapy applications of zinc (II) phthalocyanine on human melanoma cancer. Photodiagnosis Photodyn Ther 2021; 36:102518. [PMID: 34478898 DOI: 10.1016/j.pdpdt.2021.102518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
This study aims to investigate the photodynamic therapy (PDT) effects on MeWo (human melanoma cells) and HaCaT (normal human keratinocyte cells) by light stimulation of different concentrations of Zinc (II)-tetra-tert-butyl-phthalocyaninato (ZnPc). MTT viability assay data indicated that a 25 μM concentration of ZnPc is cytotoxic to the melanoma cancer cells while this concentration of ZnPc is not cytotoxic for the HaCaT cell line. Moreover, the results showed that photoactivated ZnPc at 12.5 μM concentration reduced the cell viability of the MeWo cell line to about 50 %. At this photosensitizing concentration, the efficacy of light doses of 20, 30, 40, and 50 J/cm2 was evaluated against MeWo and HaCaT cells. ZnPc at a concentration of 12.5 μM activated with a light dose of 50 J/cm2 was the most efficient for the killing of MeWo cells. In conclusion, the 12.5 μM of ZnPc with the treatment light dose of 50 J/cm2 from a RED light source was adequate to destroy MeWo cells by the ROS-induced apoptosis mechanism. It also exhibited low killing effects on healthy HaCaT cells. These findings are supported by the results of apoptosis with the Annexin V & Dead Cell Kit and fluorescence imaging.
Collapse
Affiliation(s)
- Sevda Zeinali
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ayca Tuncel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdulcelil Yüzer
- Faculty of Engineering, Department of Engineering Fundamental Sciences, Tarsus University, 33400, Tarsus, Turkey
| | - Fatma Yurt
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey; Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
10
|
Abstract
The healing power of light has attracted interest for thousands of years. Scientific discoveries and technological advancements in the field have eventually led to the emergence of photodynamic therapy, which soon became a promising approach in treating a broad range of diseases. Based on the interaction between light, molecular oxygen, and various photosensitizers, photodynamic therapy represents a non-invasive, non-toxic, repeatable procedure for tumor treatment, wound healing, and pathogens inactivation. However, classic photosensitizing compounds impose limitations on their clinical applications. Aiming to overcome these drawbacks, nanotechnology came as a solution for improving targeting efficiency, release control, and solubility of traditional photosensitizers. This paper proposes a comprehensive path, starting with the photodynamic therapy mechanism, evolution over the years, integration of nanotechnology, and ending with a detailed review of the most important applications of this therapeutic approach.
Collapse
|
11
|
Das M, Solanki A, Ganesh A, Thakore S. Emerging hybrid biomaterials for oxidative stress induced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 34:102259. [PMID: 33737219 DOI: 10.1016/j.pdpdt.2021.102259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Cancer therapy has undergone tremendous advancements in the past few years. The drawbacks of most of these therapies have encouraged researchers to obtain further insight into the complex chemical, biochemical and biological processes ongoing in the evolving cancer cells. These studies have led to an advent of reactive oxygen species mediated therapies to target and disrupt the cancer pathology. Photodynamic therapy (PDT) has emerged as a potent candidate for oxidative stress mediated non-invasive technique for rapid diagnosis and treatment of cancer. Towards this, biomacromolecules derived hybrid nanomaterials have contributed largely in the development of various therapeutics and theranostics for efficacious cancer management that can assist PDT. This review summarizes various hybrid biomaterials and advanced techniques that have been explored widely in the past few years for PDT application. The article also mentions some of the important in-vitro and in-vivo developments and observations explored by employing these materials for PDT application. The article also describes the interactions of these materials at the biological interface and the probable mechanism that assist in generation of oxidative stress and subsequent cell death.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India
| | - Archana Solanki
- Research and Development Centre, Gujarat Narmada Valley Fertilizers and Chemicals Ltd, Bharuch, 392015, India
| | - Ashwini Ganesh
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India; Institute of Interdisciplinary Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India.
| |
Collapse
|