1
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2024:1-29. [PMID: 39445563 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
2
|
Xie J, Wang H, Huang Q, Lin J, Wen H, Miao Y, Lv L, Ruan D, Yu X, Qin L, Zhou Y. Enhanced cytotoxicity to lung cancer cells by mitochondrial delivery of camptothecin. Eur J Pharm Sci 2023; 189:106561. [PMID: 37562549 DOI: 10.1016/j.ejps.2023.106561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT. These nanoparticles (NPs) showed enhanced drug accumulation in cancer cells through tumor targeting. HCT entered acidic lysosomes through endosomal transport, HA was degraded by hyaluronidase (HAase) in acidic lysosomes, and the positively charged CPT-TPP was exposed and accumulated fully in the mitochondria. Subsequently, CPT-TPP significantly disrupted the mitochondrial structure and damaged mitochondrial function, leading to increased reactive oxygen species (ROS) levels and energy depletion. Finally, HCT enhanced lung cancer cell apoptosis via the activation of caspase-3 and caspase-9. Furthermore, greatly increased tumor growth inhibition was observed in nude mice bearing A549 xenograft tumors after the administration of HCT via tail injection. This study demonstrated that the mitochondria-targeted delivery of CPT may be a promising antitumor therapeutic strategy.
Collapse
Affiliation(s)
- Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - Yingling Miao
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Lv
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dongxue Ruan
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Shibata A, Koseki Y, Tanita K, Suzuki R, Dao ATN, Kasai H. Development of camptothecin nano-prodrugs based on trimethyl lock groups toward selective drug release in cancer cells. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Gong X, Wang Z, Zhang L, Dong W, Wang R, Liu Y, Song S, Hu Q, Du F, Shuang S, Dong C. A novel carbon-nanodots-based theranostic nano-drug delivery system for mitochondria-targeted imaging and glutathione-activated delivering camptothecin. Colloids Surf B Biointerfaces 2022; 218:112712. [PMID: 35921692 DOI: 10.1016/j.colsurfb.2022.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Chemotherapy is severely limited by continuously decreased therapeutic efficacy and uncontrolled side effects on normal tissue, which can be improved by constructing a nanoparticle-based drug delivery system (DDS). Nevertheless, no studies have reported on DDS-based on carbon-nanodots (CNDs), combining subcellular organelle-targeted imaging/drug delivery, high drug loading content, and glutathione (GSH)-sensitive drug release into one system. Herein, the as-fabricated CNDs can be covalently conjugated with a mitochondria-targeting ligand (triphenylphosphine, TPP), a smart GSH-responsive disulfide linker (S-S), and the anticancer drug (camptothecin, CPT) to initially prepare a theranostic nano-DDS (TPP-CNDs-S-CPT) with the drug loading efficiency of 64.6 wt%. Owing to excellent water dispersibility, superior fluorescence properties, satisfactory cell permeability, and favorable biocompatibility, TPP-CNDs-S-CPT was successfully used for intracellular mitochondrial-targeted imaging in vitro. High intracellular GSH concentrations in tumor cells caused the cleavage of S-S, resulting in concomitant activation and release of CPT, as well as significant fluorescence enhancement. In vivo, TPP-CNDs-S-CPT exhibited lower biological toxicity and even higher tumor-activatable performance than free CPT, as well as specific cancer therapy with few side effects. The mitochondria-targeted ability and the precise drug-release in tumor make TPP-CNDs-S-CPT a hopeful chemotherapy prodrug, providing significant theoretical basis and data support for in-depth understanding and exploration of chemotherapeutic DDS-based on CNDs.
Collapse
Affiliation(s)
- Xiaojuan Gong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Zihan Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Li Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ruiping Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengmei Song
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Fangfang Du
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
5
|
Irinotecan-loaded ROS-responsive liposomes containing thioether phosphatidylcholine for improving anticancer activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Shah AH, Suter R, Gudoor P, Doucet-O’Hare TT, Stathias V, Cajigas I, de la Fuente M, Govindarajan V, Morell AA, Eichberg DG, Luther E, Lu VM, Heiss J, Komotar RJ, Ivan ME, Schurer S, Gilbert MR, Ayad NG. A Multiparametric Pharmacogenomic Strategy for Drug Repositioning predicts Therapeutic Efficacy for Glioblastoma Cell Lines. Neurooncol Adv 2021; 4:vdab192. [DOI: 10.1093/noajnl/vdab192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Poor prognosis of glioblastoma patients and the extensive heterogeneity of glioblastoma at both the molecular and cellular level necessitates developing novel individualized treatment modalities via genomics-driven approaches.
Methods
This study leverages numerous pharmacogenomic and tissue databases to examine drug repositioning for glioblastoma. RNAseq of glioblastoma tumor samples from The Cancer Genome Atlas (TCGA, n=117) were compared to “normal” frontal lobe samples from Genotype-Tissue Expression Portal (GTEX, n=120) to find differentially expressed genes (DEGs). Using compound-gene expression data and drug activity data from the Library of Integrated Network-Based Cellular Signatures (LINCS, n=66,512 compounds) CCLE (71 glioma cell lines), and Chemical European Molecular Biology Laboratory (ChEMBL) platforms, we employed a summarized reversal gene expression metric (sRGES) to “reverse” the resultant disease signature for GBM and its subtypes. A multi-parametric strategy was employed to stratify compounds capable of blood brain barrier penetrance with a favorable pharmacokinetic profile (CNS-MPO).
Results
Significant correlations were identified between sRGES and drug efficacy in GBM cell lines in both ChEMBL(r=0.37,p<.001) and Cancer Therapeutic Response Portal (CTRP) databases (r=0.35, p<0.001). Our multiparametric algorithm identified two classes of drugs with highest sRGES and CNS-MPO: HDAC inhibitors (vorinostat and entinostat) and topoisomerase inhibitors suitable for drug repurposing.
Conclusions
Our studies suggest that reversal of glioblastoma disease signature correlates with drug potency for various GBM subtypes. This multiparametric approach may set the foundation for an early-phase personalized -omics clinical trial for glioblastoma by effectively identifying drugs that are capable of reversing the disease signature and have favorable pharmacokinetic and safety profiles.
Collapse
Affiliation(s)
- Ashish H Shah
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - Robert Suter
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - Pavan Gudoor
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | | | | | - Iahn Cajigas
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | | | - Vaidya Govindarajan
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - Alexis A Morell
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - Daniel G Eichberg
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - Evan Luther
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - Victor M Lu
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - John Heiss
- Surgical Neurology Division, NINDS National Institute of Health
| | - Ricardo J Komotar
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | - Michael E Ivan
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| | | | | | - Nagi G Ayad
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miami
| |
Collapse
|
7
|
Luo X, Chi X, Lin Y, Yang Z, Lin H, Gao J. A camptothecin prodrug induces mitochondria-mediated apoptosis in cancer cells with cascade activations. Chem Commun (Camb) 2021; 57:11033-11036. [PMID: 34608474 DOI: 10.1039/d1cc04379j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria are crucial regulators of the intrinsic pathway of apoptosis. Herein, we report a photosensitizer-conjugated camptothecin (CPT)-based prodrug for combinative chemo-photodynamic treatment of solid tumors with cascade activations. Upon light irradiation, our prodrug can effectively target the mitochondria of cancer cells, generate singlet oxygen to increase the level of reactive oxygen species (ROS) and trigger ROS-responsive release of CPT, which synergistically induce mitochondrial damage and cause the apoptosis of cancer cells, therefore achieving high therapeutic efficacy for solid tumors and minimized adverse effects to normal tissues. Our prodrug holds great promise as a potent and inspiring means for cancer treatment.
Collapse
Affiliation(s)
- Xiangjie Luo
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Yaying Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zhaoxuan Yang
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
8
|
Laksee S, Supachettapun C, Muangsin N, Lertsarawut P, Rattanawongwiboon T, Sricharoen P, Limchoowong N, Chutimasakul T, Kwamman T, Hemvichian K. Targeted Gold Nanohybrids Functionalized with Folate-Hydrophobic-Quaternized Pullulan Delivering Camptothecin for Enhancing Hydrophobic Anticancer Drug Efficacy. Polymers (Basel) 2021; 13:2670. [PMID: 34451205 PMCID: PMC8400492 DOI: 10.3390/polym13162670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023] Open
Abstract
This study presented a green, facile and efficient approach for a new combination of targeted gold nanohybrids functionalized with folate-hydrophobic-quaternized pullulan delivering hydrophobic camptothecin (CPT-GNHs@FHQ-PUL) to enhance the efficacy, selectivity, and safety of these systems. New formulations of spherical CPT-GNHs@FHQ-PUL obtained by bio-inspired strategy were fully characterized by TEM, EDS, DLS, zeta-potential, UV-vis, XRD, and ATR-FTIR analyses, showing a homogeneous particles size with an average size of approximately 10.97 ± 2.29 nm. CPT was successfully loaded on multifunctional GNHs@FHQ-PUL via intermolecular interactions. Moreover, pH-responsive CPT release from newly formulated-CPT-GNHs@FHQ-PUL exhibited a faster release rate under acidic conditions. The intelligent CPT-GNHs@FHQ-PUL (IC50 = 6.2 μM) displayed a 2.82-time higher cytotoxicity against human lung cancer cells (Chago-k1) than CPT alone (IC50 = 2.2 μM), while simultaneously exhibiting less toxicity toward normal human lung cells (Wi-38). These systems also showed specific uptake by folate receptor-mediated endocytosis, exhibited excellent anticancer activity, induced the death of cells by increasing apoptosis pathway (13.97%), and arrested the cell cycle at the G0-G1 phase. The results of this study showed that the delivery of CPT by smart GNHs@FHQ-PUL systems proved to be a promising strategy for increasing its chemotherapeutic effects.
Collapse
Affiliation(s)
- Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Chamaiporn Supachettapun
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pattra Lertsarawut
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Thitirat Rattanawongwiboon
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Phitchan Sricharoen
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand;
| | - Threeraphat Chutimasakul
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Tanagorn Kwamman
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Kasinee Hemvichian
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| |
Collapse
|