1
|
Lofts A, Campea MA, Winterhelt E, Rigg N, Rivera NP, Macdonald C, Frey BN, Mishra RK, Hoare T. In situ-gelling hydrophobized starch nanoparticle-based nanoparticle network hydrogels for the effective delivery of intranasal olanzapine to treat brain disorders. Int J Biol Macromol 2024; 277:134385. [PMID: 39111489 DOI: 10.1016/j.ijbiomac.2024.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Intranasal (IN) delivery offers potential to deliver antipsychotic drugs with improved efficacy to the brain. However, the solubilization of such drugs and the frequency of required re-application both represent challenges to its practical implementation in treating various mental illnesses including schizophrenia. Herein, we report a sprayable nanoparticle network hydrogel (NNH) consisting of hydrophobically-modified starch nanoparticles (SNPs) and mucoadhesive chitosan oligosaccharide lactate (COL) that can gel in situ within the nasal cavity and release ultra-small penetrative SNPs over time. Hydrophobization of the SNPs enables enhanced uptake and prolonged release of poorly water soluble drugs such as olanzapine from the NNH depot through mucous and ultimately into the brain via the nose-to-brain (N2B) pathway. The hydrogel shows high in vitro cytocompatibility in mouse striatal neuron and human primary nasal cell lines and in vivo efficacy in an amphetamine-induced pre-clinical rat schizophrenia model, with IN-delivered NNH hydrogels maintaining successful attenuation of locomotor activity for up to 4 h while all other tested treatments (drug-only IN or conventional intraperitoneal delivery) failed to attenuate at any time point past 0.5 h. As such, in situ-gelling NNHs represent a safe excipient for the IN delivery of hydrophobic drugs directly to the brain using customized SNPs that exhibit high penetration and drug complexing properties to maximize effective drug delivery.
Collapse
Affiliation(s)
- Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Matthew A Campea
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Erica Winterhelt
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Nicolette Rigg
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Nahieli Preciado Rivera
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Cameron Macdonald
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| | - Ram K Mishra
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
2
|
Burgos JM, Vega E, García ML, Pujol M, Sánchez-López E, Souto EB. Biodegradable nanoplatforms for antigen delivery: part II - nanoparticles, hydrogels, and microneedles for cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:1385-1394. [PMID: 39245925 DOI: 10.1080/17425247.2024.2400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION In recent years, chimeric antigen receptor T (CAR-T) cell therapy has resulted in a breakthrough in the treatment of patients with refractory or relapsed hematological malignancies. However, the identification of patients suitable for CAR-T cell therapy needs to be improved. AREASCOVERED CAR-T cell therapy has demonstrated excellent efficacy in hematological malignancies; however, views on determining when to apply CAR-T cells in terms of the evaluation of patient characteristics remain controversial. EXPERT OPINION We reviewed the current feasibility and challenges of CAR-T cell therapy in the most common hematological malignancies and classified them according to disease type and treatment priority, to guide clinicians and researchers in applying and investigating CAR-T cells further.
Collapse
Affiliation(s)
- Jordi Madariaga Burgos
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Estefanía Vega
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
3
|
Rodrigues TC, Figueiredo DB, Gonçalves VM, Kaneko K, Saleem IY, Miyaji EN. Liposome-based dry powder vaccine immunization targeting the lungs induces broad protection against pneumococcus. J Control Release 2024; 368:184-198. [PMID: 38395155 DOI: 10.1016/j.jconrel.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Streptococcus pneumoniae is an important human pathogen. Currently used conjugate vaccines are effective against invasive disease, but protection is restricted to serotypes included in the formulation, leading to serotype replacement. Furthermore, protection against non-invasive disease is reported to be considerably lower. The development of a serotype-independent vaccine is thus important and Pneumococcal surface protein A (PspA) is a promising vaccine candidate. PspA shows some diversity and can be classified in 6 clades and 3 families, with families 1 and 2 being the most frequent in clinical isolates. The ideal vaccine should thus induce protection against the two most common families of PspA. The aim of this work was to develop a liposome-based vaccine containing PspAs from family 1 and 2 and to characterize its immune response. Liposomes (LP) composed of dipalmitoylphosphatidylcholine (DPPC) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) with or without α-galactosylceramide (α-GalCer) were produced by microfluidics, encapsulating PspA from clade 1 (PspA1, family 1) and/or clade 4 (PspA4Pro, family 2) followed by spray-drying with trehalose to form nanocomposite microparticles carriers (NCMP). LP/NCMPs showed good stability and preservation of protein activity. LP/NCMPs containing PspA1 and/or PspA4Pro were used for immunization of mice targeting the lungs. High serum IgG antibody titers against both PspA1 and PspA4Pro were detected in animals immunized with LP/NCMPs containing α-GalCer, with a balance of IgG1 and IgG2a titers. IgG in sera from immunized mice bound to pneumococcal strains from different serotypes and expressing different PspA clades, indicating broad recognition. Mucosal IgG and IgA were also detected. Importantly, immunization with LP/NCMPs induced full protection against strains expressing PspAs from family 1 and 2. Furthermore, CD4+ resident memory T cells were detected in the lungs of the immunized animals that survived the challenge.
Collapse
Affiliation(s)
- T C Rodrigues
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - D B Figueiredo
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil; Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - V M Gonçalves
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil; Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - K Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, Merseyside, United Kingdom
| | - I Y Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, Merseyside, United Kingdom.
| | - E N Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Mobasher M, Ansari R, Castejon AM, Barar J, Omidi Y. Advanced nanoscale delivery systems for mRNA-based vaccines. Biochim Biophys Acta Gen Subj 2024; 1868:130558. [PMID: 38185238 DOI: 10.1016/j.bbagen.2024.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The effectiveness of messenger RNA (mRNA) vaccines, especially those designed for COVID-19, relies heavily on sophisticated delivery systems that ensure efficient delivery of mRNA to target cells. A variety of nanoscale vaccine delivery systems (VDSs) have been explored for this purpose, including lipid nanoparticles (LNPs), liposomes, and polymeric nanoparticles made from biocompatible polymers such as poly(lactic-co-glycolic acid), as well as viral vectors and lipid-polymer hybrid complexes. Among these, LNPs are particularly notable for their efficiency in encapsulating and protecting mRNA. These nanoscale VDSs can be engineered to enhance stability and facilitate uptake by cells. The choice of delivery system depends on factors like the specific mRNA vaccine, target cell types, stability requirements, and desired immune response. In this review, we shed light on recent advances in delivery mechanisms for self-amplifying RNA (saRNA) vaccines, emphasizing groundbreaking studies on nanoscale delivery systems aimed at improving the efficacy and safety of mRNA/saRNA vaccines.
Collapse
Affiliation(s)
- Maha Mobasher
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rais Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
5
|
Kubeil M, Suzuki Y, Casulli MA, Kamal R, Hashimoto T, Bachmann M, Hayashita T, Stephan H. Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents. Adv Healthc Mater 2024; 13:e2301404. [PMID: 37717209 PMCID: PMC11468994 DOI: 10.1002/adhm.202301404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible. Nanogels as a whole and CD-based nanogels in particular can be customized in a wide range of sizes and equipped with a desired surface charge as well as containing additional molecules inside and outside, such as dyes, solubility-mediating groups or even biological vector molecules for pharmaceutical targeting. Currently, biological investigations are mainly carried out in vitro, but more and more in vivo applications are gaining importance. Modern molecular imaging methods are increasingly being used for the latter. Due to an extremely high sensitivity and the possibility of obtaining quantitative data on pharmacokinetic and pharmacodynamic properties, nuclear methods such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiolabeled compounds are particularly suitable here. The use of radiolabeled nanogels for imaging, but also for therapy, is being discussed.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Yota Suzuki
- Graduate School of Science and EngineeringSaitama University255 Shimo‐OkuboSakura‐KuSaitama338‐8570Japan
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | | | - Rozy Kamal
- Department of Nuclear MedicineManipal College of Health ProfessionsManipal Academy of Higher EducationManipalKarnataka576104India
| | - Takeshi Hashimoto
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Takashi Hayashita
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Holger Stephan
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
6
|
Chandpa HH, Panda AK, Meena CL, Meena J. Beyond the polysaccharide and glycoconjugate vaccines for Streptococcus pneumoniae: Does protein/peptide nanovaccines hold promises? Vaccine 2023; 41:7515-7524. [PMID: 37980259 DOI: 10.1016/j.vaccine.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Streptococcus pneumoniae having almost 98 serotypes and being common cause of acute otitis media, pneumonia, bacteremia, meningitis etc., which results in high mortality and morbidity globally. Although vaccines like PCV-13 and PPV-23 are available, some problems like serotype replacement and poor immunogenicity in children, old age and immunocompromised people has been observed. To overcome these drawbacks protein/peptide-based vaccine can be a good strategy as these provides wide serotype coverage. However, immunogenicity of protein subunit vaccines is lower, that issue can be solved by using adjuvants. Recently nanoparticles as an adjuvant for vaccine delivery being used, which has provided not only good immunogenicity but also improved delivery and efficiency of protein-based vaccines. In this review we have discussed the latest advancement of nanoparticles-based protein/peptide vaccine delivery for Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Amulya Kumar Panda
- Panacea Biotec Limited, Mohan Cooperative Industrial Estate, Badarpur, New Delhi 110044, India
| | - Chhuttan Lal Meena
- Drug Design Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
7
|
López-Iglesias C, Klinger D. Rational Design and Development of Polymeric Nanogels as Protein Carriers. Macromol Biosci 2023; 23:e2300256. [PMID: 37551821 DOI: 10.1002/mabi.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Proteins have gained significant attention as potential therapeutic agents owing to their high specificity and reduced toxicity. Nevertheless, their clinical utility is hindered by inherent challenges associated with stability during storage and after in vivo administration. To overcome these limitations, polymeric nanogels (NGs) have emerged as promising carriers. These colloidal systems are capable of efficient encapsulation and stabilization of protein cargoes while improving their bioavailability and targeted delivery. The design of such delivery systems requires a comprehensive understanding of how the synthesis and formulation processes affect the final performance of the protein. This review highlights critical aspects involved in the development of NGs for protein delivery, with specific emphasis on loading strategies and evaluation techniques. For example, factors influencing loading efficiency and release kinetics are discussed, along with strategies to optimize protein encapsulation through protein-carrier interactions to achieve the desired therapeutic outcomes. The discussion is based on recent literature examples and aims to provide valuable insights for researchers working toward the advancement of protein-based therapeutics.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, 15782, Spain
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
| |
Collapse
|
8
|
Umemoto S, Nakahashi-Ouchida R, Yuki Y, Kurokawa S, Machita T, Uchida Y, Mori H, Yamanoue T, Shibata T, Sawada SI, Ishige K, Hirano T, Fujihashi K, Akiyoshi K, Kurashima Y, Tokuhara D, Ernst PB, Suzuki M, Kiyono H. Cationic-nanogel nasal vaccine containing the ectodomain of RSV-small hydrophobic protein induces protective immunity in rodents. NPJ Vaccines 2023; 8:106. [PMID: 37488116 PMCID: PMC10366164 DOI: 10.1038/s41541-023-00700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.
Collapse
Affiliation(s)
- Shingo Umemoto
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc, Tokyo, Japan
| | - Shiho Kurokawa
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Ishige
- Biochemicals Division, Yamasa Corporation, Chiba, Japan
| | - Takashi Hirano
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yosuke Kurashima
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daisuke Tokuhara
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Peter B Ernst
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Masashi Suzuki
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan.
- HanaVax Inc, Tokyo, Japan.
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| |
Collapse
|
9
|
Yuki Y, Harada N, Sawada SI, Uchida Y, Nakahashi-Ouchida R, Mori H, Yamanoue T, Machita T, Kanazawa M, Fukumoto D, Ohba H, Miyazaki T, Akiyoshi K, Fujihashi K, Kiyono H. Biodistribution assessment of cationic pullulan nanogel, a nasal vaccine delivery system, in mice and non-human primates. Vaccine 2023:S0264-410X(23)00754-5. [PMID: 37385890 DOI: 10.1016/j.vaccine.2023.06.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Cationic cholesteryl-group-bearing pullulan nanogel (cCHP-nanogel) is an effective drug-delivery system for nasal vaccines. However, cCHP-nanogel-based nasal vaccines might access the central nervous system due to its close proximity via the olfactory bulb in the nasal cavity. Using real-time quantitative tracking of the nanogel-based nasal botulinum neurotoxin and pneumococcal vaccines, we previously confirmed the lack of deposition of vaccine antigen in the cerebrum or olfactory bulbs of mice and non-human primates (NHPs), rhesus macaques. Here, we used positron emission tomography to investigate the biodistribution of the drug-delivery system itself, cCHP-nanogel after mice and NHPs were nasally administered with 18F-labeled cCHP nanogel. The results generated by the PET analysis of rhesus macaques were consistent with the direct counting of radioactivity due to 18F or 111In in dissected mouse tissues. Thus, no depositions of cCHP-nanogel were noted in the cerebrum, olfactory bulbs, or eyes of both species after nasal administration of the radiolabeled cCHP-nanogel compound. Our findings confirm the safe biodistribution of the cCHP-nanogel-based nasal vaccine delivery system in mice and NHPs.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; HanaVax Inc, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Yohei Uchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | | | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | | | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; HanaVax Inc, Tokyo, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine (cMAV) Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
10
|
Afshari E, Cohan RA, Sotoodehnejadnematalahi F, Mousavi SF. In-silico design and evaluation of an epitope-based serotype-independent promising vaccine candidate for highly cross-reactive regions of pneumococcal surface protein A. J Transl Med 2023; 21:13. [PMID: 36627666 PMCID: PMC9830136 DOI: 10.1186/s12967-022-03864-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The pathogenicity of pneumococcus with high morbidity, mortality, and multi-drug resistance patterns has been increasing. The limited coverage of the licensed polysaccharide-based vaccines and the replacement of the non-vaccine serotypes are the main reasons for producing a successful serotype-independent vaccine. Pneumococcal surface protein A (PspA) is an extremely important virulence factor and an interesting candidate for conserved protein-based pneumococcal vaccine classified into two prominent families containing five clades. PspA family-elicited immunity is clade-dependent, and the level of the PspA cross-reactivity is restricted to the same family. METHODS To cover and overcome the clade-dependent immunity of the PspAs in this study, we designed and tested a PspA1-5c+p vaccine candidate composed of the highest immunodominant coverage of B- and T-cell epitope truncated domain of each clade focusing on two cross-reactive B and C regions of the PspAs. The antigenicity, toxicity, physicochemical properties, 3D structure prediction, stability and flexibility of the designed protein using molecular dynamic (MD) simulation, molecular docking of the construct withHLADRB1*(01:01) and human lactoferrin N-lop, and immune simulation were assessed using immunoinformatics tools. In the experimental section, after intraperitoneal immunization of the mice with Alum adjuvanted recombinant PspA1-5c+p, we evaluated the immune response, cross-reactivity, and functionality of the Anti-PspA1-5c+p antibody using ELISA, Opsonophagocytic killing activity, and serum bactericidal assay. RESULTS For the first time, this work suggested a novel PspA-based vaccine candidate using immunoinformatics tools. The designed PspA1-5c+p protein is predicted to be highly antigenic, non-toxic, soluble, stable with low flexibility in MD simulation, and able to stimulate both humoral and cellular immune responses. The designed protein also could interact strongly with HLADRB1*(01:01) and human lactoferrin N-lop in the docking study. Our immunoinformatics predictions were validated using experimental data. Results showed that the anti-PspA1-5c+p IgG not only had a high titer with strong and same cross-reactivity coverage against all pneumococcal serotypes used but also had high and effective bioactivity for pneumococcal clearance using complement system and phagocytic cells. CONCLUSION Our findings elucidated the potential application of the PspA1-5c+p vaccine candidate as a serotype-independent pneumococcal vaccine with a strong cross-reactivity feature. Further in-vitro and in-vivo investigations against other PspA clades should be performed to confirm the full protection of the PspA1-5c+p vaccine candidate.
Collapse
Affiliation(s)
- Elnaz Afshari
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ahangari Cohan
- grid.420169.80000 0000 9562 2611Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Fattah Sotoodehnejadnematalahi
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Fazlollah Mousavi
- grid.420169.80000 0000 9562 2611Department of Microbiology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164 Iran
| |
Collapse
|
11
|
Immunologically effective biomaterials-enhanced vaccines against infection of pathogenic microorganisms. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
12
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
13
|
Musher DM, Anderson R, Feldman C. The remarkable history of pneumococcal vaccination: an ongoing challenge. Pneumonia (Nathan) 2022; 14:5. [PMID: 36153636 PMCID: PMC9509586 DOI: 10.1186/s41479-022-00097-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Although it varies with age and geographical distribution, the global burden of infection with Streptococcus pneumoniae (pneumococcus) remains considerable. The elderly, and younger adults with comorbid conditions, are at particularly high risk of pneumococcal infection, and this risk will increase as the population ages. Vaccination should be the backbone of our current strategies to deal with this infection. Main body: This manuscript reviews the history of the development of pneumococcal vaccines, and the impact of different vaccines and vaccination strategies over the past 111 years. It documents the early years of vaccine development in the gold mines of South Africa, when vaccination with killed pneumococci was shown to be effective, even before the recognition that different pneumococci were antigenically distinct. The development of type-specific vaccines, still with whole killed pneumococci, showed a high degree of efficacy. The identification of the importance of the pneumococcal capsule heralded the era of vaccination with capsular polysaccharides, although with the advent of penicillin, interest in pneumococcal vaccine development waned. The efforts of Austrian and his colleagues, who documented that despite penicillin therapy, patients still died from pneumococcal infection in the first 96 h, ultimately led to the licensing first of a 14-valent pneumococcal polysaccharide in 1977 followed by the 23-valent pneumococcal polysaccharide in 1983. The principal problem with these, as with other polysaccharide vaccines, was that that they failed to immunize infants and toddlers, who were at highest risk for pneumococcal disease. This was overcome by chemical linking or conjugation of the polysaccharide molecules to an immunogenic carrier protein. Thus began the era of pneumococcal conjugate vaccine (PCV), starting with PCV7, progressing to PCV10 and PCV13, and, most recently, PCV15 and PCV20. However, these vaccines remain serotype specific, posing the challenge of new serotypes replacing vaccine types. Current research addresses serotype-independent vaccines which, so far, has been a challenging and elusive endeavor. Conclusion: While there has been enormous progress in the development of pneumococcal vaccines during the past century, attempts to develop a vaccine that will retain its efficacy for most pneumococcal serotypes are ongoing.
Collapse
|
14
|
Protopapa C, Siamidi A, Pavlou P, Vlachou M. Excipients Used for Modified Nasal Drug Delivery: A Mini-Review of the Recent Advances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6547. [PMID: 36233902 PMCID: PMC9571052 DOI: 10.3390/ma15196547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ongoing challenging task in the field of nasal drug delivery is the maintenance of an efficient concentration of the active substance in the target area for an adequate period of time. Thus, there is an urgent need to develop effective new strategies for drug delivery to the nose, using cutting edge technology and materials for this particular type of drug delivery. This review gives an account of the critical components of nasal drug delivery and the parameters influencing drug absorption in the nose, including the excipients required for modified drug administration.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Angeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
15
|
Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022; 186:114325. [PMID: 35550392 PMCID: PMC9085465 DOI: 10.1016/j.addr.2022.114325] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
With the pandemic of severe acute respiratory syndrome coronavirus 2, vaccine delivery systems emerged as a core technology for global public health. Given that antigen processing takes place inside the cell, the intracellular delivery and trafficking of a vaccine antigen will contribute to vaccine efficiency. Investigations focusing on the in vivo behavior and intracellular transport of vaccines have improved our understanding of the mechanisms relevant to vaccine delivery systems and facilitated the design of novel potent vaccine platforms. In this review, we cover the intracellular trafficking and in vivo fate of vaccines administered via various routes and delivery systems. To improve immune responses, researchers have used various strategies to modulate vaccine platforms and intracellular trafficking. In addition to progress in vaccine trafficking studies, the challenges and future perspectives for designing next-generation vaccines are discussed.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Self-assembled polysaccharide nanogel delivery system for overcoming tumor immune resistance. J Control Release 2022; 347:175-182. [PMID: 35526613 DOI: 10.1016/j.jconrel.2022.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
In therapeutic cancer vaccines, vaccine antigens must be efficiently delivered to the antigen-presenting cells (dendritic cells and macrophages) located in the lymphoid organs (lymph nodes and spleen) at the appropriate time to induce a potent antitumor immune response. Nanoparticle-based delivery systems in cancer immunotherapy are of great interest in recent year. We have developed a novel cancer vaccine that can use self-assembled polysaccharide nanogel of cholesteryl group-modified pullulan (CHP) as an antigen delivery system for clinical cancer immunotherapy for the first time. Additionally, we recently proposed a novel technology that uses CHP nanogels to regulate the function of tumor-associated macrophages, leading to an improvement in the tumor microenvironment. When combined with other immunotherapies, macrophage function modulation using CHP nanogels demonstrated a potent inhibitory effect against cancers resistant to immune checkpoint inhibition therapies. In this review, we discuss the applications of our unique drug nanodelivery system for CHP nanogels.
Collapse
|
17
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
18
|
The Communication between Ocular Surface and Nasal Epithelia in 3D Cell Culture Technology for Translational Research: A Narrative Review. Int J Mol Sci 2021; 22:ijms222312994. [PMID: 34884799 PMCID: PMC8657734 DOI: 10.3390/ijms222312994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.
Collapse
|
19
|
Kiyono H, Yuki Y, Nakahashi-Ouchida R, Fujihashi K. Mucosal vaccines: wisdom from now and then. Int Immunol 2021; 33:767-774. [PMID: 34436595 PMCID: PMC8633596 DOI: 10.1093/intimm/dxab056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
The oral and nasal cavities are covered by the mucosal epithelium that starts at the beginning of the aero-digestive tract. These mucosal surfaces are continuously exposed to environmental antigens including pathogens and allergens and are thus equipped with a mucosal immune system that mediates initial recognition of pathogenicity and initiates pathogen-specific immune responses. At the dawn of our scientific effort to explore the mucosal immune system, dental science was one of the major driving forces as it provided insights into the importance of mucosal immunity and its application for the control of oral infectious diseases. The development of mucosal vaccines for the prevention of dental caries was thus part of a novel approach that contributed to building the scientific foundations of the mucosal immune system. Since then, mucosal immunology and vaccines have gone on a scientific journey to become one of the major entities within the discipline of immunology. Here, we introduce our past and current efforts and future directions for the development of mucosal vaccines, specifically a rice-based oral vaccine (MucoRice) and a nanogel-based nasal vaccine, with the aim of preventing and controlling gastrointestinal and respiratory infectious diseases using the interdisciplinary fusion of mucosal immunology with agricultural science and biomaterial engineering, respectively.
Collapse
Affiliation(s)
- Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, San Diego, CA, USA
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kohtaro Fujihashi
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Nakahashi-Ouchida R, Uchida Y, Yuki Y, Katakai Y, Yamanoue T, Ogawa H, Munesue Y, Nakano N, Hanari K, Miyazaki T, Saito Y, Umemoto S, Sawada SI, Mukerji R, Briles DE, Yasutomi Y, Akiyoshi K, Kiyono H. A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci. Vaccine 2021; 39:3353-3364. [PMID: 34016473 DOI: 10.1016/j.vaccine.2021.04.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Current polysaccharide-based pneumococcal vaccines are effective but not compatible with all serotypes of Streptococcus pneumoniae. We previously developed an adjuvant-free cationic nanogel nasal vaccine containing pneumococcal surface protein A (PspA), which is expressed on the surfaces of all pneumococcal serotypes. Here, to address the sequence diversity of PspA proteins, we formulated a cationic nanogel-based trivalent pneumococcal nasal vaccine and demonstrated the vaccine's immunogenicity and protective efficacy in macaques by using a newly developed nasal spray device applicable to humans. Nasal vaccination of macaques with cationic cholesteryl pullulan nanogel (cCHP)-trivalent PspA vaccine effectively induced PspA-specific IgGs that bound to pneumococcal surfaces and triggered complement C3 deposition. The immunized macaques were protected from pneumococcal intratracheal challenge through both inhibition of lung inflammation and a dramatic reduction in the numbers of bacteria in the lungs. These results demonstrated that the cCHP-trivalent PspA vaccine is an effective candidate vaccine against pneumococcal infections.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; HanaVax Inc., Tokyo 103-0012, Japan
| | - Yuko Katakai
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiromi Ogawa
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Yoshiko Munesue
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Nozomi Nakano
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Kouji Hanari
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | | | - Yuki Saito
- Toko Yakuhin Kogyo Co., Ltd., 930-0211, Japan
| | - Shingo Umemoto
- Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Faculty of Medicine, Department of Otorhinolaryngology and Head and Neck Surgery, Oita University, Oita 879-5593, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Reshmi Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, United States
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, United States
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; HanaVax Inc., Tokyo 103-0012, Japan; Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan; CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0063, United States.
| |
Collapse
|