1
|
Ding J, Zhang X, Guo L, Xiong J, Zhang C, Du Z, Zhu L, Alifu N, Dong B. NIR Triggered Bionic Bilayer Membrane-Encapsulated Nanoparticles for Synergistic Photodynamic, Photothermal and Chemotherapy of Cervical Cancer. Int J Nanomedicine 2025; 20:141-159. [PMID: 39802385 PMCID: PMC11721149 DOI: 10.2147/ijn.s496982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect. Patients and Methods In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized. For in vitro analysis, the biocompatibility and tumor inhibition properties of the nanoparticles were evaluated. For in vivo analysis, the antitumor properties of the nanoparticles were explored in a mouse subcutaneous tumor model. Results RBC@ICG-DOX NPs were successfully prepared with strong safety and good blood compatibility, which can effectively reduce drug leakage and prolong drug circulation time in the body. In vitro performance evaluation showed that RBC@ICG-DOX NPs obtained excellent photothermal conversion ability and well reactive oxygen generation performance under near-infrared laser irradiation. Both in vitro and in vivo experiments showed well phototherapy-chemotherapy effect of RBC@ICG-DOX NPs with low toxic side effects. Conclusion Drug delivery, imaging and tumor synergies were accomplished through combinatorial strategies as well as bilayer membrane encapsulation, opening up a new platform for the design of future tumor combination therapies.
Collapse
Affiliation(s)
- Jiayi Ding
- Institute of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Le Guo
- Institute of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Jiabao Xiong
- Second Clinical Medical College, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Chi Zhang
- Institute of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Zhong Du
- Second Clinical Medical College, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Lijun Zhu
- Second Clinical Medical College, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Nuernisha Alifu
- Institute of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
- Second Clinical Medical College, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Biao Dong
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
2
|
Bal T, Anjrini N, Zeroual M. Recent Advances and Challenges in Targeted Drug Delivery Using Biofunctional Coatings. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:41-75. [DOI: 10.1039/9781837675555-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Globally, clinics are overwhelmed by drugs targeting undesired cells and organs, causing adverse systemic effects on the body. This shortfall in targeting specificity, safety, and efficiency has noticeably contributed to the failure of the bench-to-bedside transition. Activation or impairment of immune activity due to a misdirected drug and its carrier fuels complications, extending the range of destruction which can convert the course of disease into a life-threatening route. To address these great challenges, advanced coatings as indispensable components of future medicine have been investigated over the last few decades for precisely targeted drug delivery to achieve favorable prognoses in the treatment of a broad spectrum of diseases. Complemented by advancements in the pharmacological parameters, these systems hold great promise for the field. This chapter aims to discuss recent progress on new coatings for targeted drug delivery and the parameters for manufacturing these platforms for their cargo based on major determinants such as biocompatibility and bioactivity. A brief overview of the various applications of targeted drug delivery with functional coatings is also provided to offer a new perspective on the field.
Collapse
Affiliation(s)
- Tugba Bal
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
- bDepartment of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Nasma Anjrini
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Meryem Zeroual
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| |
Collapse
|
3
|
Mengyuan H, Aixue L, Yongwei G, Qingqing C, Huanhuan C, Xiaoyan L, Jiyong L. Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication. J Nanobiotechnology 2024; 22:604. [PMID: 39370518 PMCID: PMC11456251 DOI: 10.1186/s12951-024-02835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells. This paper delves into the communication mechanisms between various cell-derived biomimetic nanocarriers, tumor cells, and the tumor microenvironment, as well as their applications in drug delivery. In addition, the additional communication capabilities conferred on the modified biomimetic nanocarriers, such as targeting and environmental responsiveness, are outlined. Finally, we propose future development directions for biomimetic nanocarriers, hoping to inspire researchers in their design efforts and ultimately achieve clinical translation.
Collapse
Affiliation(s)
- He Mengyuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Li Aixue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Gu Yongwei
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Chai Qingqing
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Cai Huanhuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Liu Xiaoyan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Liu Jiyong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhang J, Chen N, Ren L, Nie L, Yunusov KE, Aharodnikau UE, Solomevich SO, Sun Y, Jiang G. A red cell membrane-camouflaged nanoreactor for enhanced starvation/chemodynamic/ion interference therapy for breast cancer. Colloids Surf B Biointerfaces 2024; 245:114293. [PMID: 39378701 DOI: 10.1016/j.colsurfb.2024.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
In this study, a multifunctional Cu-doped CaO2 nanoreactor loaded with GOx and camouflaged with a folic acid-modified cell membranewas developed for breast cancer treatment. The as-developed composite nanoreactor showed a synergistic effect on calcium overload to damage mitochondria, thus killing tumor cells to achieve ion interference therapy (IIT). The loaded GOx could deplete glucose to "starve" tumor cells. The H2O2 released by CaO2 decomposition and enzyme catalytic reactions from GOx could not only be highly toxic in the tumor microenvironment but also enhance the efficiency of chemodynamic therapy (CDT) with Cu2+. The red blood cell membranes modified by folic acid achieved a combination of active targeting and passive targeting, thereby enhancing the targeting ability of the as-prepared multifunctional composite nanoreactor and prolonging its retention time at the tumor sites for more than 48 h.
Collapse
Affiliation(s)
- Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Nan Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030, Belarus
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and TissueEngineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
6
|
Deng C, Zhang H, Song L. Environment-responsive dopamine nanoplatform for tumor synergistic therapy. Discov Oncol 2024; 15:334. [PMID: 39101970 DOI: 10.1007/s12672-024-01214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Nanoparticle-based photothermal therapy (PTT) has emerged as a promising approach in tumor treatment due to its high selectivity and low invasiveness. However, the penetration of near-infrared light (NIR) is limited, leading it fails to induce damage to the deep-seated tumor cells within the tumor tissue. Additionally, inefficient uptake of photothermal nanoparticles by tumor cells results in suboptimal outcomes for PTT. In this study, we utilized the adhesive properties of photothermal material, polydopamine (PDA), which can successfully load the photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) to achieve photothermal and chemotherapy synergy treatment (PDA/DOX&ICG), aiming to compensate the defects of single tumor treatment. To extending the blood circulation time of PDA/DOX&ICG nanoparticles, evading clearance by the body immune system and achieving targeted delivery to tumor tissues, a protective envelopment was created using erythrocyte membranes modified with folate acid (FA-EM). After reaching the tumor tissue, the obtained FA-EM@PDA/DOX&ICG nanoparticles can specific bind with folate acid receptors on the surface of tumor cells, which can improve the uptake behavior of FA-EM@PDA/DOX&ICG nanoparticles by tumor cells, and leading to the release of loaded DOX and ICG in response to the unique tumor microenvironment. ICG, as a typical photosensitizer, significantly enhances the photothermal conversion performance of FA-EM@PDA/DOX&ICG nanoparticles, thus inducing tumor cells damage. In vitro and in vivo experimental results demonstrated that the coordinated NIR treatment with FA-EM@PDA/DOX&ICG not only effectively inhibits tumor growth, but also exhibits superior biocompatibility, effectively mitigating DOX-induced tissue damage.
Collapse
Affiliation(s)
- Chunmin Deng
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, Jiangsu Province, China
| | - Hao Zhang
- YanCheng No. 1 People's Hospital, Yancheng, 224001, China
| | - Li Song
- YanCheng No. 1 People's Hospital, Yancheng, 224001, China.
| |
Collapse
|
7
|
Alimohammadvand S, Kaveh Zenjanab M, Mashinchian M, Shayegh J, Jahanban-Esfahlan R. Recent advances in biomimetic cell membrane-camouflaged nanoparticles for cancer therapy. Biomed Pharmacother 2024; 177:116951. [PMID: 38901207 DOI: 10.1016/j.biopha.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall. The comprehensive examination encompasses a variety of cell membrane camouflaged NPs (CMCNPs), elucidating their underlying targeted therapy mechanisms and delineating diverse strategies for anti-cancer applications. Furthermore, the review systematically presents the synthesis of source materials and methodologies employed in order to construct and characterize these CMCNPs, with a specific emphasis on their use in cancer treatment.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar branch, Shabestar, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Sun L, Li Z, Lan J, Wu Y, Zhang T, Ding Y. Better together: nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Front Pharmacol 2024; 15:1389922. [PMID: 38831883 PMCID: PMC11144913 DOI: 10.3389/fphar.2024.1389922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Combination therapies can enhance the sensitivity of cancer to drugs, lower drug doses, and reduce side effects in cancer treatment. However, differences in the physicochemical properties and pharmacokinetics of different therapeutic agents limit their application. To avoid the above dilemma and achieve accurate control of the synergetic ratio, a nanoscale co-delivery system (NCDS) has emerged as a prospective tool for combined therapy in cancer treatment, which is increasingly being used to co-load different therapeutic agents. In this study, we have summarized the mechanisms of therapeutic agents in combination for cancer therapy, nanoscale carriers for co-delivery, drug-loading strategies, and controlled/targeted co-delivery systems, aiming to give a general picture of these powerful approaches for future NCDS research studies.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Bashiru M, Macchi S, Forson M, Khan A, Ishtiaq A, Oyebade A, Jalihal A, Ali N, Griffin RJ, Oyelere AK, Hooshmand N, Siraj N. Doxorubicin-Based Ionic Nanomedicines for Combined Chemo-Phototherapy of Cancer. ACS APPLIED NANO MATERIALS 2024; 7:2176-2189. [PMID: 38410412 PMCID: PMC10896075 DOI: 10.1021/acsanm.3c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Synergistic combination therapy approach offers lots of options for delivery of materials with anticancer properties, which is a very promising strategy to treat a variety of malignant lesions with enhanced therapeutic efficacy. The current study involves a detailed investigation of combination ionic nanomedicines where a chemotherapeutic drug is coupled with a photothermal agent to attain dual mechanisms (chemotherapy (chemo) and photothermal therapy (PTT)) to improve the drug's efficacy. An FDA-approved Doxorubicin hydrochloride (DOX·HCl) is electrostatically attached with a near-infrared cyanine dye (ICG, IR783, and IR820), which serves as a PTT drug using ionic liquid chemistry to develop three ionic material (IM)-based chemo-PTT drugs. Carrier-free ionic nanomedicines (INMs) are derived from ionic materials (IMs). The photophysical properties of the developed combination IMs and their INMs were studied in depth. The phototherapeutic efficiency of the combination drugs was evaluated by measuring the photothermal conversion efficiency and singlet-oxygen quantum yield. The improved photophysical properties of the combination nanomedicines in comparison to their parent compounds significantly enhanced INMs' photothermal efficiency. Cellular uptake, dark and light toxicity studies, and cell death mechanisms of the chemo-PTT nanoparticles were also studied in vitro. The combination INMs exhibited enhanced cytotoxicity compared to their respective parent compounds. Moreover, the apoptosis cell death mechanism was almost doubled for combination nanomedicine than the free DOX, which is attributed to enhanced cellular uptake. Examination of the combination index and improved in vitro cytotoxicity results revealed a great synergy between chemo and PTT drugs in the developed combination nanomedicines.
Collapse
Affiliation(s)
- Mujeebat Bashiru
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Mavis Forson
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Amna Khan
- Department of Chemistry, University of Arkansas at Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Arisha Ishtiaq
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Adeniyi Oyebade
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Amanda Jalihal
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Robert J Griffin
- Department of Radiation Oncology, Arkansas Nanomedicine Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|
10
|
Zhang W, Chen L, Zhang X, Gong P, Wang X, Xu Z, Nie G, Xu L. Functionalized nanohybrids with rod shape for improved chemo-phototherapeutic effect against cancer by sequentially generating singlet oxygen and carbon dioxide bubbles. Biomater Sci 2023; 11:6894-6905. [PMID: 37650600 DOI: 10.1039/d3bm00541k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The application of hybrid nanocarriers is expected to play an active role in improving treatment of chemotherapy and phototherapy. Herein, a nanohybrid with a core of mesoporous silica nanorods and shell of folate-functionalized zeolite imidazole framework (ZIF-8/FA) was synthesized via polydopamine (PDA)-mediated integration. A chemotherapeutic drug (DOX), bubble generator (NH4HCO3, ABC), and photosensitive agent (ICG) were simultaneously loaded into the delivery system to construct smart ZIF-8/FA-coated mesoporous silica nanorods (IDa-PRMSs@ZF). We found that ICG endowed the designed delivery system with a moderate photothermal conversion efficiency of 26.06% and the capacity to release 1O2. The produced hyperthermia caused ABC to decompose and further generate carbon dioxide bubbles, thereby facilitating DOX release, sequentially. Importantly, the underlying mechanism was also investigated using mathematical kinetic modeling. The tumor inhibition rate of IDa-PRMSs@ZF under NIR irradiation reached 83.8%. This study provides a promising strategy based on rod-shaped nanohybrids for effective combination antitumor therapy.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, China
| | - Lu Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, China
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, China
| | - Xiyu Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhiying Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Ganyu Nie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
11
|
Xie J, Wang H, Huang Q, Lin J, Wen H, Miao Y, Lv L, Ruan D, Yu X, Qin L, Zhou Y. Enhanced cytotoxicity to lung cancer cells by mitochondrial delivery of camptothecin. Eur J Pharm Sci 2023; 189:106561. [PMID: 37562549 DOI: 10.1016/j.ejps.2023.106561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT. These nanoparticles (NPs) showed enhanced drug accumulation in cancer cells through tumor targeting. HCT entered acidic lysosomes through endosomal transport, HA was degraded by hyaluronidase (HAase) in acidic lysosomes, and the positively charged CPT-TPP was exposed and accumulated fully in the mitochondria. Subsequently, CPT-TPP significantly disrupted the mitochondrial structure and damaged mitochondrial function, leading to increased reactive oxygen species (ROS) levels and energy depletion. Finally, HCT enhanced lung cancer cell apoptosis via the activation of caspase-3 and caspase-9. Furthermore, greatly increased tumor growth inhibition was observed in nude mice bearing A549 xenograft tumors after the administration of HCT via tail injection. This study demonstrated that the mitochondria-targeted delivery of CPT may be a promising antitumor therapeutic strategy.
Collapse
Affiliation(s)
- Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - Yingling Miao
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Lv
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dongxue Ruan
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
12
|
Chen M, Leng Y, He C, Li X, Zhao L, Qu Y, Wu Y. Red blood cells: a potential delivery system. J Nanobiotechnology 2023; 21:288. [PMID: 37608283 PMCID: PMC10464085 DOI: 10.1186/s12951-023-02060-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Red blood cells (RBCs) are the most abundant cells in the body, possessing unique biological and physical properties. RBCs have demonstrated outstanding potential as delivery vehicles due to their low immunogenicity, long-circulating cycle, and immune characteristics, exhibiting delivery abilities. There have been several developments in understanding the delivery system of RBCs and their derivatives, and they have been applied in various aspects of biomedicine. This article compared the various physiological and physical characteristics of RBCs, analyzed their potential advantages in delivery systems, and summarized their existing practices in biomedicine.
Collapse
Affiliation(s)
- Mengran Chen
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yamei Leng
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan He
- Guang'an People's Hospital, Guang'an, 638001, Sichuan, People's Republic of China
| | - Xuefeng Li
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ying Qu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Gao X, Du J, Cheng L, Li Z, Li C, Ban X, Gu Z, Hong Y. Modification of Octenyl Succinic Anhydride Starch by Grafting Folic Acid and its Potential as an Oral Colonic Delivery Carrier. STARCH-STARKE 2023. [DOI: 10.1002/star.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xiang Gao
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Jing Du
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| |
Collapse
|
14
|
Yu H, Yan J, Li Z, Song T, Ning F, Tan J, Sun Y. Enhanced photothermal-ferroptosis effects based on RBCm-coated PDA nanoparticles for effective cancer therapy. J Mater Chem B 2023; 11:415-429. [PMID: 36512437 DOI: 10.1039/d2tb02329f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ferroptosis, a type of programmed cell death induced by the iron-dependent lipid hydroperoxide pathway, has attracted widespread attention. However, Fenton response-dependent ferroptosis has many limitations, such as insufficient reaction conditions in the tumor micro-environment. Here, we propose an all-in-one phototherapy nanoplatform consisting of iron-polydopamine (Fe-PDA), a folic acid-modified red blood cell membrane (FA-RBCm), and epirubicin (EPI), namely, Fe-PDA-EPI@FA-RBCm NPs, to achieve enhanced photothermal-ferroptosis effects via overcoming the limitations of the Fenton-like reaction. The results showed that the synthesized biomimetic nanoparticles could decompose hydrogen peroxide (H2O2) to generate hydroxyl radicals (˙OH), and further induce the non-apoptotic ferroptosis pathway. After irradiation with near-infrared (NIR) light, the uptake of Fe-PDA-EPI@FA-RBCm NPs by cells could be effectively promoted, and it presented impressive in vitro and in vivo photothermal properties. In vitro and in vivo results showed that laser irradiation could enhance ferroptosis by promoting the production of reactive oxygen species (ROS) and lipid peroxides, down-regulating the expression of glutathione peroxidase 4 (GPX4), and reducing the mitochondrial membrane potential. Furthermore, the photothermal-promoted ferroptosis and apoptosis pathways (photothermal therapy and chemotherapy) exhibited outstanding synergistic antitumor efficacy in vitro and in vivo, with an in vivo tumor inhibition rate as high as 76.95%. In conclusion, the construction of tumor-targeted biomimetic nanocarriers utilizing the advantageous properties of RBCm has been investigated as a potential anticancer strategy.
Collapse
Affiliation(s)
- Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Jinshan Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
15
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Zhu Y, Zhou X, Yao Z. A mini-review: Advances in plant-derived extracellular vesicles as nano-delivery systems for tumour therapy. Front Bioeng Biotechnol 2022; 10:1076348. [PMID: 36588940 PMCID: PMC9797590 DOI: 10.3389/fbioe.2022.1076348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles are functionally active, nanoscale, membrane-bound vesicles that can be secreted by all cells. They have a key role in most health and disease states and have gradually become a promising class of delivery vehicles for targeted therapies for a variety of diseases. Plant-derived extracellular vesicles have received increasing attention based on their easy availability, non-toxicity and high absorption. However, compared with mammalian extracellular vesicles, the role of these nanoparticles as nano-delivery systems in tumour therapy has been underestimated. In this paper, the application of plant-derived extracellular vesicles and their nano-derivatives as nano-delivery systems in tumour therapy is reviewed to illustrate their great application potential.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaona Zhou
- Department of First Clinical Medical, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Zheng Yao, ; Xiaona Zhou,
| | - Zheng Yao
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China,Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming, China,*Correspondence: Zheng Yao, ; Xiaona Zhou,
| |
Collapse
|
17
|
Yan J, Fei W, Song Q, Zhu Y, Bu N, Wang L, Zhao M, Zheng X. Cell membrane-camouflaged PLGA biomimetic system for diverse biomedical application. Drug Deliv 2022; 29:2296-2319. [PMID: 35861175 PMCID: PMC9310915 DOI: 10.1080/10717544.2022.2100010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The emerging cell membrane (CM)-camouflaged poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) (CM@PLGA NPs) have witnessed tremendous developments since coming to the limelight. Donning a novel membrane coat on traditional PLGA carriers enables combining the strengths of PLGA with cell-like behavior, including inherently interacting with the surrounding environment. Thereby, the in vivo defects of PLGA (such as drug leakage and poor specific distribution) can be overcome, its therapeutic potential can be amplified, and additional novel functions beyond drug delivery can be conferred. To elucidate the development and promote the clinical transformation of CM@PLGA NPs, the commonly used anucleate and eukaryotic CMs have been described first. Then, CM engineering strategies, such as genetic and nongenetic engineering methods and hybrid membrane technology, have been discussed. The reviewed CM engineering technologies are expected to enrich the functions of CM@PLGA for diverse therapeutic purposes. Third, this article highlights the therapeutic and diagnostic applications and action mechanisms of PLGA biomimetic systems for cancer, cardiovascular diseases, virus infection, and eye diseases. Finally, future expectations and challenges are spotlighted in the concept of translational medicine.
Collapse
Affiliation(s)
- Jingjing Yan
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Song
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Zhu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Meng D, Yang S, Yang Y, Zhang L, Cui L. Synergistic chemotherapy and phototherapy based on red blood cell biomimetic nanomaterials. J Control Release 2022; 352:146-162. [PMID: 36252749 DOI: 10.1016/j.jconrel.2022.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Novel drug delivery systems (DDSs) have become the mainstay of research in targeted cancer therapy. By combining different therapeutic strategies, potential DDSs and synergistic treatment approaches are needed to effectively deal with evolving drug resistance and the adverse effects of cancer. Nowadays, developing and optimizing human cell-based DDSs has become a new research strategy. Among them, red blood cells can be used as DDSs as they significantly enhance the pharmacokinetics of the transported drug cargo. Phototherapy, as a novel adjuvant in cancer treatment, can be divided into photodynamic therapy and photothermal therapy. Phototherapy using erythropoietic nanocarriers to mimic the unique properties of erythrocytes and overcome the limitations of existing DDSs shows excellent prospects in clinical settings. This review provides an overview of the development of photosensitizers and research on bio-nano-delivery systems based on erythrocytes and erythrocyte membranes that are used in achieving synergistic outcomes during phototherapy/chemotherapy.
Collapse
Affiliation(s)
- Di Meng
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China
| | - Shuoye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China.
| | - Yanan Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China
| | - Lu Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| | - Lan Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| |
Collapse
|
19
|
Li H, Dai W, Liu Z, He L. Renal Proximal Tubular Cells: A New Site for Targeted Delivery Therapy of Diabetic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:ph15121494. [PMID: 36558944 PMCID: PMC9786989 DOI: 10.3390/ph15121494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD) worldwide. A significant number of drugs have been clinically investigated for the treatment of DKD. However, a large proportion of patients still develop end-stage kidney disease unstoppably. As a result, new effective therapies are urgently needed to slow down the progression of DKD. Recently, there is increasing evidence that targeted drug delivery strategies such as large molecule carriers, small molecule prodrugs, and nanoparticles can improve drug efficacy and reduce adverse side effects. There is no doubt that targeted drug delivery strategies have epoch-making significance and great application prospects for the treatment of DKD. In addition, the proximal tubule plays a very critical role in the progression of DKD. Consequently, the purpose of this paper is to summarize the current understanding of proximal tubule cell-targeted therapy, screen for optimal targeting strategies, and find new therapeutic approaches for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | - Liyu He
- Correspondence: ; Tel.: +86-731-8529-2064
| |
Collapse
|
20
|
Wu Y, Sun Z, Song J, Mo L, Wang X, Liu H, Ma Y. Preparation of multifunctional mesoporous SiO 2nanoparticles and anti-tumor action. NANOTECHNOLOGY 2022; 34:055101. [PMID: 36317264 DOI: 10.1088/1361-6528/ac9e5f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
A targeted drug delivery system was developed to accumulate specific drugs around tumor cells based on the redox, temperature, and enzyme synergistic responses of mesoporous silica nanoparticles. Mesoporous silica nanoparticles (MSN-NH2) and Doxorubicin (DOX) for tumor therapy were prepared and loaded into the pores of MSN- NH2 to obtain DOX@MSN(DM NPs). Hyaluronic acid (HA) was used as the backbone and disulfide bond was used as the linker arm to graft carboxylated poly (N-isopropylacrylamide)(PNIPAAm-COOH) to synthesize the macromolecular copolymer (HA-SS-PNIPAAm), which was modified to DM NPs with capped ends to obtain the nano-delivery system DOX@MSN@HA-SS-PNIPAAm(DMHSP NPs), and a control formulation was prepared in a similar way. DMHSP NPs specifically entered tumor cells via CD44 receptor-mediated endocytosis; the high GSH concentration (10 mM) of cells severed the disulfide bonds, the hyaluronidase sheared the capped HA to open the pores, and increased tumor microenvironment temperature due to immune response can trigger the release of encapsulated drugs in thermosensitive materials.In vitroandin vivoantitumor and hemolysis assays showed that DMHSP NPs can accurately target hepatocellular carcinoma cells with a good safety profile and have synergistic effects, which meant DMHSP NPs had great potential for tumor therapy.
Collapse
Affiliation(s)
- Yijun Wu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Zhiqiang Sun
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Jinfeng Song
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Liufang Mo
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Xiaochen Wang
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Hanhan Liu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, People's Republic of China
| |
Collapse
|
21
|
Qin J, Zhang J, Fan G, Wang X, Zhang Y, Wang L, Zhang Y, Guo Q, Zhou J, Zhang W, Ma J. Cold Atmospheric Plasma Activates Selective Photothermal Therapy of Cancer. Molecules 2022; 27:molecules27185941. [PMID: 36144674 PMCID: PMC9502787 DOI: 10.3390/molecules27185941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the body’s systemic distribution of photothermal agents (PTAs), and to the imprecise exposure of lasers, photothermal therapy (PTT) is challenging to use in treating tumor sites selectively. Striving for PTT with high selectivity and precise treatment is nevertheless important, in order to raise the survival rate of cancer patients and lower the likelihood of adverse effects on other body sections. Here, we studied cold atmospheric plasma (CAP) as a supplementary procedure to enhance selectivity of PTT for cancer, using the classical photothermic agent’s gold nanostars (AuNSs). In in vitro experiments, CAP decreases the effective power of PTT: the combination of PTT with CAP at lower power has similar cytotoxicity to that using higher power irradiation alone. In in vivo experiments, combination therapy can achieve rapid tumor suppression in the early stages of treatment and reduce side effects to surrounding normal tissues, compared to applying PTT alone. This research provides a strategy for the use of selective PTT for cancer, and promotes the clinical transformation of CAP.
Collapse
Affiliation(s)
- Jiamin Qin
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingqi Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Guojuan Fan
- Department of Skin, Weifang Hospital of Traditional Chinese Medicine, Weifang 261000, China
| | - Xiaoxia Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuzhong Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ling Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Qingfa Guo
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jinlong Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| |
Collapse
|
22
|
Zhang L, Huang P, Huang S, Wang T, Chen S, Chen Z, Zhou Y, Qin L. Development of ligand modified erythrocyte coated polydopamine nanomedicine to codeliver chemotherapeutic agent and oxygen for chemo-photothermal synergistic cancer therapy. Int J Pharm 2022; 626:122156. [PMID: 36058410 DOI: 10.1016/j.ijpharm.2022.122156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
The use of conventional chemotherapy often faces limitations such as severe side effects, weak tumor tissue specificity, and the development of multidrug resistance. To conquer these challenges, numerous novel drug carriers have been designed in recent years. However, due to the complex processes of tumor development, metastasis and recurrence, single chemotherapy cannot fulfill the goals of clinical diverse treatment. In this work, by utilizing the inherent characteristics of surface-modified erythrocyte and the outstanding photothermal conversion capability of polydopamine (PDA), we designed and constructed a biomimetic multifunctional nanomedicine DPPR NPs to codeliver chemotherapeutic agent doxorubicin (DOX) and oxygen. The results showed that DPPR NPs exhibited inspiring features including nanoscale droplet size, good physicochemical stability, and sustained, pH-, and NIR triggered drug release behavior. It can dramatically prolong the systematic circulation time and elevated the drug accumulated level in the tumor site. Moreover, DPPR NPs could be effectively internalized into tumor cells and destroyed the intracellular redox balance to mediate cell apoptosis. It exerted excellent in vivo tumor targeting effect, photothermal conversion efficiency, ultrasound imaging responses, antitumor efficacy, and good compatibility. In summary, DPPR NPs provide a biomimetic drug delivery platform to organically combine chemotherapy and photothermal therapy for precise cancer treatment.
Collapse
Affiliation(s)
- Liyao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Peijie Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shubin Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Tao Wang
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, PR China
| | - Shufeng Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
23
|
Wang X, Li P, Jing X, Zhou Y, Shao Y, Zheng M, Wang J, Ran H, Tang H. Folate-modified erythrocyte membrane nanoparticles loaded with Fe 3O 4 and artemisinin enhance ferroptosis of tumors by low-intensity focused ultrasound. Front Oncol 2022; 12:864444. [PMID: 36033521 PMCID: PMC9399670 DOI: 10.3389/fonc.2022.864444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
To overcome the challenges of the low efficiency of artemisinin (ART) in anticancer therapy due to its poor water solubility and poor bioavailability, we constructed folate (FA)-modified erythrocyte membrane (EM)-camouflaged poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) (PFH/ART@PLGA/Fe3O4-eFA). Specifically, the inner core of these NPs is mainly composed of phase-changeable perfluorohexane (PFH), magnetic Fe3O4 and ART. In vitro experiments showed that the prepared PFH/ART@PLGA/Fe3O4-eFA was readily taken up by 4T1 cancer cells. PFH/ART@PLGA/Fe3O4-eFA was exposed to low-intensity focused ultrasound (LIFU) irradiation to induce PFH phase transition and NPs collapse, which promoted the release of ART and Fe3O4. After LIFU irradiation, the proportion of dead 4T1 cells, the level of reactive oxygen species (ROS) and the concentration of intracellular Fe2+ ions in the PFH/ART@PLGA/Fe3O4-eFA group were much higher than those in the other group, indicating that the synergistic effect between the intracellular Fe2+ ions and the released ART played a critical role in tumor cell ferroptosis by enhancing ROS generation in vitro. We demonstrated that FA-modified EM NPs could enhance the targeting and accumulation of the NPs at the tumor site in vivo. After LIFU irradiation at 3 W/m2 for 7 min, tumor growth was completely suppressed through FA-modified EM NPs collapse and the release of ART and Fe3O4, which exerted synergistic effects in inducing tumor ferroptosis. Because of these characteristics, these NPs are considered as a promising approach for the delivery of drugs with poor water solubility for efficient cancer therapy.
Collapse
Affiliation(s)
- Xingyue Wang
- Department of Ultrasonography, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Li
- Department of Diagnostic Ultrasoundand Echocardiography, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yun Zhou
- Department of Ultrasound, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfu Shao
- Department of Ultrasonography, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Min Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Junrui Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hailin Tang
- Department of Ultrasound, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
25
|
Zeng L, Shi W, Wang H, Cheng X, Chen T, Wang LL, Lan J, Sun W, Liu M, Zhang X, Zhang J, Chen J. Codelivery of π-π Stacked Dual Anticancer Drugs Based on Aloe-Derived Nanovesicles for Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27686-27702. [PMID: 35675505 DOI: 10.1021/acsami.2c06546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To overcome the low efficacy of conventional monotherapeutic approaches that use a single drug, functional nanocarriers loaded with an amalgamation of anticancer drugs have been promising in cancer therapy. Herein, aloe-derived nanovesicles (gADNVs) are modified with an active integrin-targeted peptide (Arg-Gly-Asp, RGD) by the postinsertion technique to deliver indocyanine green (ICG) and doxorubicin (DOX) for efficient breast cancer therapy. We presented for the first time that the π-π stacking interaction can turn the "competitive" relationship of ICG and DOX inside gADNVs into a "cooperative" relationship and enhance their loading efficiency. The dual-drug codelivery nanosystem, denoted as DIARs, was well stable and leakproof, exhibiting high tumor-targeting capability both in vitro and in vivo. Meanwhile, this nanosystem showed significant inhibition of cell growth and migration and induced cell apoptosis with the combination of phototherapy and chemotherapy. Intravenous administration of DIARs exhibited high therapeutic efficacy in a 4T1 tumor-bearing mouse model and exhibited no obvious damage to other organs. Overall, our DIAR nanosystem constitutively integrated the natural and economical gADNVs, π-π stacking interaction based on efficient drug loading, and tumor-targeted RGD modification to achieve an effective combination therapy for breast cancer.
Collapse
Affiliation(s)
- Lupeng Zeng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Wanhua Shi
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Huaying Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Xin Cheng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Tingting Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Liang Liang Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Meicen Liu
- Longyan First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Longyan, Fujian 364000, P. R. China
| | - Xi Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China
| |
Collapse
|
26
|
Zhang Y, Wang Y, Xin Q, Li M, Yu P, Luo J, Xu X, Chen X, Li J. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): a general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J Mater Chem B 2022; 10:2497-2503. [PMID: 35019930 DOI: 10.1039/d1tb02493k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erythrocyte membrane nanosystems have become one of the important research directions of disease treatment, especially for tumor treatment, and can enhance the long circulation time of anti-cancer drugs in vivo, and penetrate and accumulate in the tumor site effectively. However, erythrocyte membranes lack targeting properties and it is necessary to provide tumor-targeting function by modifying erythrocyte membranes. In this study, we report on a novel modification method of an erythrocyte membrane nanosystem to target tumors. Specifically, the tumor-targeting molecule folate-poly (ethylene glycol) (FA-PEG) was modified with a zwitterionic 2-(methyl acryloyoxy) ethyl choline phosphate (MCP) by the Michael addition reaction to obtain MCP-modified FA-PEG (MCP-PEG-FA). Based on the strong "N-P" tetravalent electrostatic interaction between MCP and phosphatidyl choline on the erythrocyte membranes, MCP-PEG-FA can be modified on the erythrocyte membrane encapsulated doxorubicin (DOX) loaded poly(lactic-co-glycolic acid) (PLGA) nanosystem to form a tumor-targeting erythrocyte membrane nanosystem (FA-RBC@PLGA-DOX). The results show that MCP-PEG-FA was synthesized and successfully bonded to the erythrocyte membrane nanosystem, and the FA-RBC@PLGA-DOX nanosystem had a better tumor-targeting function and tumor killing effect compared with those of the nanosystems without FA ligand modification. The universal modification method of erythrocyte membranes is successfully provided and can be applied to the treatment of various diseases.
Collapse
Affiliation(s)
- Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Mingjing Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China. .,College of Medicine, Southwest Jiaotong University, Chengdu, 610003, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
27
|
Pasban S, Raissi H. Nanotechnology-based approaches for targeting and delivery of drugs via Hexakis (m-PE) macrocycles. Sci Rep 2021; 11:8256. [PMID: 33859230 PMCID: PMC8050045 DOI: 10.1038/s41598-021-87011-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022] Open
Abstract
Hexakis (m-phenylene ethynylene) (m-PE) macrocycles, with aromatic backbones and multiple hydrogen-bonding side chains, had a very high propensity to self-assemble via H-bond and π-π stacking interactions to form nanotubular structures with defined inner pores. Such stacking of rigid macrocycles is leading to novel applications that enable the researchers to explored mass transport in the sub-nanometer scale. Herein, we performed density functional theory (DFT) calculations to examine the drug delivery performance of the hexakis dimer as a novel carrier for doxorubicin (DOX) agent in the chloroform and water solvents. Based on the DFT results, it is found that the adsorption of DOX on the carrier surface is typically physisorption with the adsorption strength values of - 115.14 and - 83.37 kJ/mol in outside and inside complexes, respectively, and so that the essence of the drug remains intact. The negative values of the binding energies for all complexes indicate the stability of the drug molecule inside and outside the carrier's cavities. The energy decomposition analysis (EDA) has also been performed and shown that the dispersion interaction has an essential role in stabilizing the drug-hexakis dimer complexes. To further explore the electronic properties of dox, the partial density of states (PDOS and TDOS) are calculated. The atom in molecules (AIM) and Becke surface (BS) methods are also analyzed to provide an inside view of the nature and strength of the H-bonding interactions in complexes. The obtained results indicate that in all studied complexes, H-bond formation is the driving force in the stabilization of these structures, and also chloroform solvent is more favorable than the water solution. Overall, our findings offer insightful information on the efficient utilization of hexakis dimer as drug delivery systems to deliver anti-cancer drugs.
Collapse
Affiliation(s)
- Samaneh Pasban
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|