1
|
Pani I, Hardt M, Glikman D, Braunschweig B. Photo-induced drug release at interfaces with arylazopyrazoles. Chem Sci 2024:d4sc04837g. [PMID: 39464617 PMCID: PMC11503751 DOI: 10.1039/d4sc04837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Smart responsive materials have spurred the progress in high-precision drug delivery. Enormous attention has been given to characterizing drug release in bulk aqueous solutions, however, aqueous-hydrophobic interfaces are vital components of biological systems which serve as the point of entry into cells. These interfaces are involved in many key biomolecular interactions, and while the potential for drug molecules to adsorb to these interfaces is recognized, their specific role in the context of drug release remains largely unexplored. We present a fundamental investigation on the release of encapsulated drugs at the air-water interface as a representative model to mimic the organic/aqueous interface of cells. Combining the advantages of light as an external stimulus and the superiority of arylazopyrazoles (AAP) over conventional azobenzene photoswitches, we report a micellar nanocarrier for the capture and release of the chemotherapeutic drug doxorubicin. Using a powerful combination of interface-sensitive techniques such as the Langmuir-Blodgett technique, surface tensiometry, and the interface-specific vibrational sum-frequency generation spectroscopy, we demonstrate the photoresponsive release of doxorubicin encapsulated in the micelles of AAP photosurfactants to the air-water interface. Complementary fluorescence measurements corroborate additional drug release in bulk aqueous solutions.
Collapse
Affiliation(s)
- Ipsita Pani
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Michael Hardt
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Dana Glikman
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| |
Collapse
|
2
|
Arayici PP, Coksu I, Ozbek T, Acar S. Targeted delivery of rifaximin using P6.2-decorated bifunctional PLGA nanoparticles for combating Staphylococcus aureus infections. BIOMATERIALS ADVANCES 2024; 161:213862. [PMID: 38678666 DOI: 10.1016/j.bioadv.2024.213862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
The emergence of antibiotic resistance makes the treatment of bacterial infections difficult and necessitates the development of alternative strategies. Targeted drug delivery systems are attracting great interest in overcoming the limitations of traditional antibiotics. Here, we aimed for targeted delivery of rifaximin (RFX) by decorating RFX-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with synthetic P6.2 peptide, which was used as a targeting agent for the first time. Our results showed that encapsulation of RFX into NPs increased its antibacterial activity by improving its solubility and providing controlled release, while P6.2 modification allowed targeting of NPs to S. aureus bacterial cells. A promising therapeutic approach for bacterial infections, these P6.2-conjugated RFX-loaded PLGA NPs (TR-NP) demonstrated potent antibacterial activity against both strains of S. aureus. The antibacterial activity of RFX-loaded PLGA NPs (R-NP) showed significant results with an increase of 8 and 16-fold compared to free RFX against S. aureus and MRSA, respectively. Moreover, the activity of targeted nanoparticles was found to be increased 32 or 16-fold with an MBC value of 0.0078 μg/mL. All nanoparticles were found to be biocompatible at doses where they showed antimicrobial activity. Finally, it revealed that P6.2-conjugated targeted nanoparticles extremely accumulated in S. aureus rather than E. coli.
Collapse
Affiliation(s)
- Pelin Pelit Arayici
- Yildiz Technical University, Faculty of Chemical and Metallurgical, Department of Bioengineering, 34210 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey.
| | - Irem Coksu
- Yildiz Technical University, Faculty of Chemical and Metallurgical, Department of Bioengineering, 34210 Esenler, Istanbul, Turkey
| | - Tulin Ozbek
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 34220 Esenler, Istanbul, Turkey
| | - Serap Acar
- Yildiz Technical University, Faculty of Chemical and Metallurgical, Department of Bioengineering, 34210 Esenler, Istanbul, Turkey
| |
Collapse
|
3
|
Mukesh S, Mukherjee G, Singh R, Steenbuck N, Demidova C, Joshi P, Sangamwar AT, Wade RC. Comparative analysis of drug-salt-polymer interactions by experiment and molecular simulation improves biopharmaceutical performance. Commun Chem 2023; 6:201. [PMID: 37749228 PMCID: PMC10519957 DOI: 10.1038/s42004-023-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
The propensity of poorly water-soluble drugs to aggregate at supersaturation impedes their bioavailability. Supersaturated amorphous drug-salt-polymer systems provide an emergent approach to this problem. However, the effects of polymers on drug-drug interactions in aqueous phase are largely unexplored and it is unclear how to choose an optimal salt-polymer combination for a particular drug. Here, we describe a comparative experimental and computational characterization of amorphous solid dispersions containing the drug celecoxib, and a polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA) or hydroxypropyl methylcellulose acetate succinate, with or without Na+/K+ salts. Classical models for drug-polymer interactions fail to identify the best drug-salt-polymer combination. In contrast, more stable drug-polymer interaction energies computed from molecular dynamics simulations correlate with prolonged stability of supersaturated amorphous drug-salt-polymer systems, along with better dissolution and pharmacokinetic profiles. The celecoxib-salt-PVP-VA formulations exhibit excellent biopharmaceutical performance, offering the prospect of a low-dosage regimen for this widely used anti-inflammatory, thereby increasing cost-effectiveness, and reducing side-effects.
Collapse
Affiliation(s)
- Sumit Mukesh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Goutam Mukherjee
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Nathan Steenbuck
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Carolina Demidova
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Faculty of Chemistry, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Prachi Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India.
| | - Rebecca C Wade
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany.
| |
Collapse
|
4
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
5
|
Zhao P, Hu G, Chen H, Li M, Wang Y, Sun N, Wang L, Xu Y, Xia J, Tian B, Liu Y, He Z, Fu Q. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int J Pharm 2022; 616:121538. [PMID: 35124119 DOI: 10.1016/j.ijpharm.2022.121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Formulating drugs into amorphous solid dispersions (ASDs) represents an attractive means to enhance the aqueous solubility of drugs. Furthermore, water-soluble polymers have proven highly advantageous for stabilizing supersaturated solutions of ASDs. However, the performance and mechanism of various polymers in stabilizing supersaturated drug solutions have not been well-studied. The aim of this study was to investigate the effects of different commercial polymers on the dissolution behaviors and supersaturation stabilization of the ASDs and to further explore the mechanism of polymer mediated supersaturation maintenance by studying the crystallization behaviors of the ASDs. In this study, nimodipine (NMD) was used as a model drug because of its poor water-solubility and fast crystallization rate in aqueous solution, and three polymers polyvinylpyrrolidone (PVP), vinylpyrrolidone-vinyl acetate copolymer (PVP VA), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus) was selected as the drug carriers to form the ASDs with NMD. Solid-state characterizations of the ASDs confirmed the amorphous state of the ASD systems. ASDPVP VA demonstrated superior supersaturation maintenance in dissolution experiments compared to the other two ASD systems. Among the polymers tested, PVP VA most efficiently maintained dissolution of NMD and prevented its crystallization from the supersaturated solution. The ability of PVP VA to most-effectively maintain supersaturation of the drug was manifested by inhibition of crystal nucleation rather than inhibition of crystal growth following nucleation. These results suggest that nucleation inhibition was instrumental in enabling the polymer-mediated supersaturation maintenance, at least with NMD.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guowei Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yiting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Nan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jialong Xia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Joshi P, Mallepogu P, Kaur H, Singh R, Sodhi I, Samal SK, Jena KC, Sangamwar AT. Explicating the molecular level drug-polymer interactions at the interface of supersaturated solution of the model drug: Albendazole. Eur J Pharm Sci 2021; 167:106014. [PMID: 34644598 DOI: 10.1016/j.ejps.2021.106014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Supersaturation as a formulation principle relates to the aqueous solubility of poorly soluble drugs in solution . However, supersaturation state of drugs tends to crystallize because of its thermodynamic instability thereby compromising the solubility and biopharmaceutical performance of drugs. The present study aims to investigate the supersaturation potential of albendazole (ABZ) and its precipitation via nucleation and crystal growth. We hypothesized the use of polymers will avoid ABZ precipitation by interacting with drug molecules. The drug polymer interactions are characterized using conventional methods of Fourier transform infrared (FTIR), Nuclear magnetic resonance (NMR) and Polarized light microscopy (PLM). We have used a novel approach of sum frequency generation (SFG) vibrational spectroscopic in exploring the drug polymer interactions at air-water interface. Recently we have reported the SFG for e rifaximin-polymer interactions (Singh et al., 2021). The supersaturation assay, saturation solubility studies and nucleation induction time analysis revealed polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP K30) as effective precipitation inhibitors thereby enhancing the ABZ equilibrium solubility and in vitro supersaturation maintenance of ABZ. Further, modification in the solid state of ABZ has confirmed the influence of polymers on its precipitation behaviour. We conclude that PVA and PVP K30 act as nucleation and crystal growth inhibitor, respectively for the precipitation inhibition of ABZ.
Collapse
Affiliation(s)
- Prachi Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Prabhakar Mallepogu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Harpreet Kaur
- Department of Physics, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Ikjot Sodhi
- Formulation Development, Fresenius Kabi Oncology Ltd., Gurgaon, Haryana 122001, India
| | - Sanjaya K Samal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India; Center for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India.
| |
Collapse
|
7
|
Mukesh S, Joshi P, Bansal AK, Kashyap MC, Mandal SK, Sathe V, Sangamwar AT. Amorphous Salts Solid Dispersions of Celecoxib: Enhanced Biopharmaceutical Performance and Physical Stability. Mol Pharm 2021; 18:2334-2348. [PMID: 34003656 DOI: 10.1021/acs.molpharmaceut.1c00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous amorphous solid dispersion (ASD) formulations of celecoxib (CEL) have been attempted for enhancing the solubility, dissolution rate, and in vivo pharmacokinetics via high drug loading, polymer combination, or by surfactant addition. However, physical stability for long-term shelf life and desired in vivo pharmacokinetics remains elusive. Therefore, newer formulation strategies are always warranted to address poor aqueous solubility and oral bioavailability with extended shelf life. The present investigation elaborates a combined strategy of amorphization and salt formation for CEL, providing the benefits of enhanced solubility, dissolution rate, in vivo pharmacokinetics, and physical stability. We generated amorphous salts solid dispersion (ASSD) formulations of CEL via an in situ acid-base reaction involving counterions (Na+ and K+) and a polymer (Soluplus) using the spray-drying technique. The generated CEL-Na and CEL-K salts were homogeneously and molecularly dispersed in the matrix of Soluplus polymer. The characterization of generated ASSDs by differential scanning calorimetry revealed a much higher glass-transition temperature (Tg) than the pure amorphous CEL, confirming the salt formation of CEL in solid dispersions. The micro-Raman and proton nuclear magnetic resonance spectroscopy further confirmed the formation of salt at the -S═O position in the CEL molecules. CEL-Na-Soluplus ASSD exhibited a synergistic enhancement in the aqueous solubility (332.82-fold) and in vivo pharmacokinetics (9.83-fold enhancement in the blood plasma concentration) than the crystalline CEL. Furthermore, ASSD formulations were physically stable for nearly 1 year (352 days) in long-term stability studies at ambient conditions. Hence, we concluded that the ASSD is a promising strategy for CEL in improving the physicochemical properties and biopharmaceutical performance.
Collapse
Affiliation(s)
- Sumit Mukesh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Prachi Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Mahesh Chand Kashyap
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector-81, S.A.S. Nagar, Punjab 140306, India
| | - Vasant Sathe
- University Grant Commission-Department of Atomic Energy Consortium for Scientific Research, University Campus, Indore, Madhya Pradesh 452017, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|