1
|
Nespi M, Ly J, Fan Y, Chen S, Liu L, Gu Y, Castleberry S. Vehicle Effect on In-Vitro and In-Vivo Performance of Spray Dry Dispersions. J Pharm Sci 2024:S0022-3549(24)00491-X. [PMID: 39486520 DOI: 10.1016/j.xphs.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
In early drug development, amorphous spray-dried dispersions (SDDs) applied to enhance the bioavailability of poorly water-soluble compounds are typically administered to preclinical species via oral gavage in the form of suspensions. The liquid formulations are usually prepared on the same day of dosing to minimize the exposure of the amorphous material to the aqueous vehicle, thereby reducing the risk of crystallization. Dose-ability (e.g. syringeability) of the suspensions is also a critical factor for the administration, particularly when high doses, thus concentrations, are required for toxicology studies. As a result, it is standard practice during early formulation screening to assess the stability and the maximum feasible concentration of SDDs in various vehicles. In this study, we evaluated the impact of different vehicles on the performance of a model SDD in in-vitro and in-vivo settings, to mitigate the risks associated with its administration in liquid form. A poorly water-soluble compound (GEN-A) was selected to screen various SDDs and generate the SDD model at 30% drug load with HPMCAS-MF polymer carrier. The SDD was suspended in selected aqueous vehicles after a careful vehicle components screening, that included suspending agents (HPC-SL), solubilizers (PEG400, Propylene glycol), surfactants (Vitamin E TPGS, SLS, Tween 80, Poloxamer 188), and complexing agents (HP-ꞵ-CD, SBE-ꞵ-CD). The suspensions were characterized for stability, dose-ability and dissolution in biorelevant media, prior administration in pre-clinical species. The SDD dissolution profile revealed that the drug's supersaturation level was positively impacted by the presence of a surfactant (SLS) and a complexing agent (SBE-ꞵ-CD) with respect to a suspending agents (HPC-SL) in the vehicle. Similarly, the pharmacokinetics profiles of the drug following the administration of the SDD in a vehicle with a complexing agent (SBE-ꞵ-CD) achieved greater exposure compare to the SDD in a vehicle with a suspending agent (HPC-SL). These findings confirm a synergistic effect between the SDD and the vehicles, suggesting that this combination could be leveraged to maximize the advantages of the amorphous approach.
Collapse
Affiliation(s)
- Marika Nespi
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Justin Ly
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Yuchen Fan
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Shu Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Liling Liu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Yimin Gu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Steven Castleberry
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
2
|
Žugec I, Geilhufe RM, Lončarić I. Global machine learning potentials for molecular crystals. J Chem Phys 2024; 160:154106. [PMID: 38624120 DOI: 10.1063/5.0196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Molecular crystals are difficult to model with accurate first-principles methods due to large unit cells. On the other hand, accurate modeling is required as polymorphs often differ by only 1 kJ/mol. Machine learning interatomic potentials promise to provide accuracy of the baseline first-principles methods with a cost lower by orders of magnitude. Using the existing databases of the density functional theory calculations for molecular crystals and molecules, we train global machine learning interatomic potentials, usable for any molecular crystal. We test the performance of the potentials on experimental benchmarks and show that they perform better than classical force fields and, in some cases, are comparable to the density functional theory calculations.
Collapse
Affiliation(s)
- Ivan Žugec
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastián, Spain
| | - R Matthias Geilhufe
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
3
|
Xu H, Wu L, Xue Y, Yang T, Xiong T, Wang C, He S, Sun H, Cao Z, Liu J, Wang S, Li Z, Naeem A, Yin X, Zhang J. Advances in Structure Pharmaceutics from Discovery to Evaluation and Design. Mol Pharm 2023; 20:4404-4429. [PMID: 37552597 DOI: 10.1021/acs.molpharmaceut.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Drug delivery systems (DDSs) play an important role in delivering active pharmaceutical ingredients (APIs) to targeted sites with a predesigned release pattern. The chemical and biological properties of APIs and excipients have been extensively studied for their contribution to DDS quality and effectiveness; however, the structural characteristics of DDSs have not been adequately explored. Structure pharmaceutics involves the study of the structure of DDSs, especially the three-dimensional (3D) structures, and its interaction with the physiological and pathological structure of organisms, possibly influencing their release kinetics and targeting abilities. A systematic overview of the structures of a variety of dosage forms, such as tablets, granules, pellets, microspheres, powders, and nanoparticles, is presented. Moreover, the influence of structures on the release and targeting capability of DDSs has also been discussed, especially the in vitro and in vivo release correlation and the structure-based organ- and tumor-targeting capabilities of particles with different structures. Additionally, an in-depth discussion is provided regarding the application of structural strategies in the DDSs design and evaluation. Furthermore, some of the most frequently used characterization techniques in structure pharmaceutics are briefly described along with their potential future applications.
Collapse
Affiliation(s)
- Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ting Yang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeying Cao
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siwen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xianzhen Yin
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 201602, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
4
|
Michailidou G, Bikiaris DN. Novel 3D-Printed Dressings of Chitosan-Vanillin-Modified Chitosan Blends Loaded with Fluticasone Propionate for Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:1966. [PMID: 36145714 PMCID: PMC9503579 DOI: 10.3390/pharmaceutics14091966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, the blends of CS and Vanillin-CS derivative (VACS) were utilized for the preparation of printable inks for their application in three-dimensional (3D) printing procedures. Despite the synergic interaction between the blends, the addition of ι-carrageenan (iCR) as a thickening agent was mandatory. Their viscosity analysis was conducted for the evaluation of the optimum CS/VACS ratio. The shear thinning behavior along with the effect of the temperature on viscosity values were evident. Further characterization of the 3D-printed structures was conducted. The effect of the CS/VACS ratio was established through swelling and contact angle measurements. An increasing amount of VACS resulted in lower swelling ability along with higher hydrophobicity. Fluticasone propionate (FLU), a crystalline synthetic corticosteroid, was loaded into the CS/VACS samples. The drug was loaded in its amorphous state, and consequently, its in vitro release was significantly enhanced. An initial burst release, followed by a sustained release profile, was observed.
Collapse
Affiliation(s)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
5
|
Pajzderska A, Mielcarek J, Wąsicki J. The Physical Stability of Felodipine and Its Recrystallization from an Amorphous Solid Dispersion Studied by NMR Relaxometry. AAPS PharmSciTech 2022; 23:93. [PMID: 35314906 DOI: 10.1208/s12249-022-02234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
The 1H nuclear magnetic resonance (NMR) relaxometry method was applied to investigate the physical stability of an active pharmaceutical ingredient (API) and, for the first time, its recrystallization process in an amorphous solid dispersion system (ASD). The ASD of felodipine and polyvinylpyrrolidone (PVP) was prepared using the solvent evaporation method in a mass ratio of 50:50. In the first stage of the study (250 days), the sample was stored at 0% relative humidity (RH). The recovery of magnetization was described by one-exponential function. In the second stage (300 days in 75% relative humidity), the recrystallization process of felodipine was studied, showing in the sample three components of equilibrium magnetization related to (i) crystalline felodipine, (ii) water, and (iii) felodipine and PVP remaining in the ASD. The study shows that the 1H NMR relaxometry method is a very useful tool for analysing the composition of a three-phase system mixed at the molecular level and for the investigation of recrystallization process of API in amorphous solid dispersion system.
Collapse
|