1
|
Franz AH, Samoshina NM, Samoshin VV. A convenient method for the relative and absolute quantification of lipid components in liposomes by 1H- and 31P NMR-spectroscopy. Chem Phys Lipids 2024; 261:105395. [PMID: 38615786 DOI: 10.1016/j.chemphyslip.2024.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Liposomes are promising delivery systems for pharmaceutical applications and have been used in medicine in the recent past. Preparation of liposomes requires reliable characterization and quantification of the phospholipid components for which the traditional cumbersome molybdate method is used frequently. The objective was to improve relative and absolute quantification of lipid components from liposomes. METHODS A reliable method for quantification of lipid composition in liposome formulations in the 1-10 μmol range with 1H- and 31P NMR spectroscopy at 600 MHz has been developed. The method is based on three crystalline small-molecule standards (Ph3PO4, (Tol)3PO4, and Ph3PO) in CDCl3. RESULTS Excellent calibration linearity and chemical stability of the standards was observed. The method was tested in blind fashion on liposomes containing POPC, PEG-ceramide and a pH-sensitive trans-aminocyclohexanol-based amphiphile (TACH).1 Relative quantification (percentage of components) as well as determination of absolute lipid amount was possible with excellent reproducibility with an average error of 5%. Quantification (triplicate) was accomplished in 15 min based on 1H NMR and in 1 h based on 31P NMR. Very little change in mixture composition was observed over multiple preparative steps. CONCLUSION Liposome preparations containing POPC, POPE, DOPC, DPPC, TACH, and PEG-ceramide can be reliably characterized and quantified by 1H NMR and 31P NMR spectroscopy at 600 MHz in the μmol range.
Collapse
Affiliation(s)
- Andreas H Franz
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Nataliya M Samoshina
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Vyacheslav V Samoshin
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| |
Collapse
|
2
|
Zhang X, Liu L, Jiao X, Su K, Cheng W, Xu B. Insight into the structural characteristics of self-assembled liposome with epigallocatechin gallate/alcohol dehydrogenase. Colloids Surf B Biointerfaces 2024; 238:113917. [PMID: 38615391 DOI: 10.1016/j.colsurfb.2024.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
In this study, the encapsulation and structural characteristics of the self-assembled liposome formed by epigallocatechin gallate (EGCG) and alcohol dehydrogenase (ADH) were studied. According to the results, EGCG significantly increased the catalytic activity of ADH with a 33.33 % activation rate and the liposomes were able to entrap EGCG-ADH with an effectiveness of 88.94 %. The self-assembled monolayers had nanometer-sized particles, and the excellent self-assembled system was demonstrated by the low PDI value and high surface absolute potential. The scanning electron microscope showed that the self-assembled liposome was honeycomb, groove-shaped, and rough. The spectroscopic results showed that EGCG-ADH complex was formed through hydrogen bond, which changed the secondary structure of the liposome, and verified EGCG-ADH liposome system was successfully prepared. In vitro digestion experiments showed that the gastrointestinal tolerance and antioxidant activity of EGCG-ADH liposomes were significantly higher than those of free EGCG-ADH.
Collapse
Affiliation(s)
- Xiaodan Zhang
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Lili Liu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Xueyuan Jiao
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Kenan Su
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Weiwei Cheng
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Baocheng Xu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
3
|
Schroder R, Dorsey PJ, Vanderburgh J, Xu W, D'Addio SM, Klein L, Gindy M, Su Y. Probing Molecular Packing of Lipid Nanoparticles from 31P Solution and Solid-State NMR. Anal Chem 2024; 96:2464-2473. [PMID: 38306310 DOI: 10.1021/acs.analchem.3c04430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Lipid nanoparticles (LNPs) are intricate multicomponent systems widely recognized for their efficient delivery of oligonucleotide cargo to host cells. Gaining insights into the molecular properties of LNPs is crucial for their effective design and characterization. However, analysis of their internal structure at the molecular level presents a significant challenge. This study introduces 31P nuclear magnetic resonance (NMR) methods to acquire structural and dynamic information about the phospholipid envelope of LNPs. Specifically, we demonstrate that the 31P chemical shift anisotropy (CSA) parameters serve as a sensitive indicator of the molecular assembly of distearoylphosphatidylcholine (DSPC) lipids within the particles. An analytical protocol for measuring 31P CSA is developed, which can be implemented using either solution NMR or solid-state NMR, offering wide accessibility and adaptability. The capability of this method is demonstrated using both model DSPC liposomes and real-world pharmaceutical LNP formulations. Furthermore, our method can be employed to investigate the impact of formulation processes and composition on the assembly of specifically LNP particles or, more generally, phospholipid-based delivery systems. This makes it an indispensable tool for evaluating critical pharmaceutical properties such as structural homogeneity, batch-to-batch reproducibility, and the stability of the particles.
Collapse
Affiliation(s)
- Ryan Schroder
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Phillip J Dorsey
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joe Vanderburgh
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wei Xu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suzanne M D'Addio
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Lee Klein
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marian Gindy
- Small Molecule Science and Technology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongchao Su
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
4
|
Wang Z, Wang X, Xu W, Li Y, Lai R, Qiu X, Chen X, Chen Z, Mi B, Wu M, Wang J. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023; 15:2623. [PMID: 38004601 PMCID: PMC10674763 DOI: 10.3390/pharmaceutics15112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| |
Collapse
|
5
|
Sciscione F, Guillaumé S, Aliev AE, Cook DT, Bronstein H, Hailes HC, Beard PC, Kalber TL, Ogunlade O, Tabor AB. EGFR-targeted semiconducting polymer nanoparticles for photoacoustic imaging. Bioorg Med Chem 2023; 91:117412. [PMID: 37473615 DOI: 10.1016/j.bmc.2023.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Semiconducting polymer nanoparticles (SPN), formulated from organic semiconducting polymers and lipids, show promise as exogenous contrast agents for photoacoustic imaging (PAI). To fully realise the potential of this class of nanoparticles for imaging and therapeutic applications, a broad range of active targeting strategies, where ligands specific to receptors on the target cells are displayed on the SPN surface, are urgently needed. In addition, effective strategies for quantifying the level of surface modification are also needed to support development of ligand-targeted SPN. In this paper, we have developed methods to prepare SPN bearing peptides targeted to Epidermal Growth Factor Receptors (EGFR), which are overexpressed at the surface of a wide variety of cancer cell types. In addition to fully characterising these targeted nanoparticles by standard methods (UV-visible, photoacoustic absorption, dynamic light scattering, zeta potential and SEM), we have developed a powerful new NMR method to determine the degree of conjugation and the number of targeting peptides attached to the SPN. Preliminary in vitro experiments with the colorectal cancer cell line LIM1215 indicated that the EGFR-targeting peptide conjugated SPN were either ineffective in delivering the SPN to the cells, or that the targeting peptide itself destabilised the formulation. This in reinforces the need for effective characterisation techniques to measure the surface accessibility of targeting ligands attached to nanoparticles.
Collapse
Affiliation(s)
- Fabiola Sciscione
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Simon Guillaumé
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Hugo Bronstein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Paul C Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, London WC1E 6DD, UK
| | - Olumide Ogunlade
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
6
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Hu X, Sun Y, Zhou X, Zhang B, Guan H, Xia F, Gui S, Kong X, Li F, Ling D. Insight into Drug Loading Regulated Micellar Rigidity by Nuclear Magnetic Resonance. ACS NANO 2022; 16:21407-21416. [PMID: 36375116 DOI: 10.1021/acsnano.2c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rigidity of polymeric micelles plays an important role in their biological behaviors. However, how drug loading affects the rigidity of polymeric micelles remains elusive. Herein, the indomethacin (IMC)-loaded Pluronic F127 micelle is used as a model system to illustrate the impact of drug loading on the rigidity and biological behaviors of polymeric micelles. Against expectations, micelles with moderate drug loading show higher cellular uptake and more severe cytotoxicity as compared to both high and low drug loading counterparts. Extensive one- and two-dimensional nuclear magnetic resonance (NMR) measurements are employed to reveal that the higher drug loading induces stronger interaction between IMC and hydrophilic block to boost the micellar rigidity; consequently, the moderate drug loading imparts micelles with appropriate rigidity for satisfactory cellular uptake and cytotoxicity. In summary, NMR spectroscopy is an important tool to gain insight into drug loading regulated micellar rigidity, which is helpful to understand their biological behaviors.
Collapse
Affiliation(s)
- Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Yu Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xiaoqi Zhou
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- WLA Laboratories, Shanghai201203, China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fan Xia
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fangyuan Li
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
| |
Collapse
|
8
|
Nanoliposomal peptides derived from Spirulina platensis protein accelerate full-thickness wound healing. Int J Pharm 2022; 630:122457. [PMID: 36455754 DOI: 10.1016/j.ijpharm.2022.122457] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Spirulina platensis is a type of blue-green algae that contains large amounts of protein with therapeutic effects. The present study was performed to investigate the effects of encapsulated Spirulina protein hydrolysates (SPH) with nanoliposomes (NLPs) in reducing wound healing period. SPH-loaded NLPs showed the size and zeta potential of 158 nm and -48 mV, respectively; as well as a uniform non-aggregated morphology. In-vitro MTT toxicity studies on the Human Foreskin Fibroblast (HFFF-2) cell line exhibited that the hydrolyzed peptides had no toxic effect and increased cell growth. The scratch test confirmed the MTT results. For in-vivo study, 162 mice were divided into nine groups, including the mice groups treated with blank gel, blank NLPs, and those treated with 2.5, 5, and 10 % SPH and SPH-loaded NLPs. The histopathological assessment was done to investigate rate of fibroblast proliferation and epithelialization. Immunofluorescence staining for bFGF, CD31, COL1A was conducted. The results showed that the mice group treated with SPH-NLPs showed higher wound contraction, epithelization, fibroblast proliferation, and higher expressions for bFGF, CD31, COL1A compared with blanks and other groups. In conclusion, the derived and encapsulated peptides showed significant effects in accelerating wound healing via angiogenesis and collagen production.
Collapse
|
9
|
Tomnikova A, Orgonikova A, Krizek T. Liposomes: preparation and characterization with a special focus on the application of capillary electrophoresis. MONATSHEFTE FUR CHEMIE 2022; 153:687-695. [PMID: 35966959 PMCID: PMC9360637 DOI: 10.1007/s00706-022-02966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Liposomes are nowadays a matter of tremendous interest. Due to their amphiphilic character, various substances with different properties can be incorporated into them and they are especially suitable as a model system for controlled transport of bioactive substances and drugs to the final destination in the body; for example, COVID-19 vaccines use liposomes as a carrier of mRNA. Liposomes mimicking composition of various biological membranes can be prepared with a proper choice of the lipids used, which proved to be important tool in the early drug development. This review deals with commonly used methods for the preparation and characterization of liposomes which is essential for their later use. The alternative capillary electrophoresis methods for physico-chemical characterization such as determination of membrane permeability of liposome, its size and charge, and encapsulation efficiency are included. Two different layouts using liposomes to yield more efficient separation of various analytes are also presented, capillary electrochromatography, and liposomal electrokinetic chromatography.
Collapse
Affiliation(s)
- Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Andrea Orgonikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022; 212:358-369. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial, and free radical scavenging agents, where the come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques, and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.
Collapse
|