1
|
Saednia S, Emami S, Moslehi M, Hosseinimehr SJ. Insights into the development of 99mTc-radioligands for serotonergic receptors imaging: Synthesis, labeling, In vitro, and In vivo studies. Eur J Med Chem 2024; 270:116349. [PMID: 38555856 DOI: 10.1016/j.ejmech.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Serotonergic (5-hydroxytryptamine; 5-HT) receptors play critical roles in neurological and psychological disorders such as schizophrenia, anxiety, depression, and Alzheimer's diseases. Therefore, it is particularly important to develop novel radioligands or modify the existing ones to identify the serotonergic receptors involved in psychiatric disorders. Among the 16 subtypes of serotonergic systems, only technetium-99m based radiopharmaceuticals have been evaluated for serotonin-1A (5-HT1A), serotonin-2A (5-HT2A), 5-HT1A/7 heterodimers and serotonin receptor neurotransmitter (SERT). This review focuses on recent efforts in the design, synthesis and evaluation of 99mTc-radioligands used for single photon emission computerized tomography (SPECT) imaging of serotonergic (5-HT) receptors. Additionally, the discussion will cover aspects such as chemical structure, in vitro/vivo stability, affinity toward serotonin receptors, blood-brain barrier permeation (BBB), and biodistribution study.
Collapse
Affiliation(s)
- Shahnaz Saednia
- Farabi Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Liu J, Kang J, Qi M, Tang J, Fang Y, Liu C, Hong J, Zuo J, Chen Z. Synthesis and initial evaluation of radioiodine-labelled deuterated tropane derivatives targeting dopamine transporter. Bioorg Med Chem Lett 2024; 102:129678. [PMID: 38408514 DOI: 10.1016/j.bmcl.2024.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
The dopamine transporter (DAT) is closely related to a variety of neurological disorders including Parkinson's disease (PD) and other neurodegenerative diseases. In vivo imaging of DAT with radio-labelled tracers has become a powerful technique in related disorders. The radioiodine-labelled tropane derivative [123I]FP-CIT ([123I]1a) is widely used in clinical single photon emission computed tomography (SPECT) imaging as a DAT imaging agent. To develop more metabolically stable DAT radioligands for accurate imaging, this work compared two novel deuterated tropane derivatives ([131I]1c-d) with non-deuterated tropane derivatives ([131I]1a-b). [131I]1a-d were obtained in high radiochemical purity (RCP) above 99 % with molar activities of 7.0-10.0 GBq/μmol. The [131I]1a and [131I]1c exhibited relatively higher affinity to DAT (Ki: 2.0-3.12 nM) than [131I]1b and [131I]1d. Biodistribution results showed that [131I]1c consistently exhibited a higher ratio of the target to non-target (striatum/cerebellum) than [131I]1a. Furthermore, metabolism studies indicated that the in vivo metabolic stability of [131I]1c was superior to that of [131I]1a. Ex vivo autoradiography showed that [131I]1c selectively localized on DAT-rich striatal regions and the specific signal could be blocked by DAT inhibitor. These results indicated that [131I]1c might be a potential probe for DAT SPECT imaging in the brain.
Collapse
Affiliation(s)
- Jie Liu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jing Kang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Meihui Qi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jingjing Hong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiaojiao Zuo
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhengping Chen
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
3
|
Mardanshahi A, Vaseghi S, Hosseinimehr SJ, Abedi SM, Molavipordanjani S. 99mTc(CO) 3-labeled 1-(2-Pyridyl)piperazine derivatives as radioligands for 5-HT 7 receptors. Ann Nucl Med 2024; 38:139-153. [PMID: 38032496 DOI: 10.1007/s12149-023-01885-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The 5-hydroxytryptamine receptor (5-HTR) family includes seven classes of receptors. The 5-HT7R is the newest member of this family and contributes to different physiological and pathological processes. As a pathology, glioblastoma multiform (GBM) overexpresses 5-HT7R; hence, this study aims to develop radiolabeled aryl piperazine derivatives as 5-HT7R imaging agents. METHODS: Compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were radiolabeled with fac-[99mTc(CO)3(H2O)3]+ and 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were obtained with high radiochemical purity (RCP > 94%). The stability of the radiotracers was evaluated in both saline and mouse serum. Specific binding on different cell lines including U-87 MG, MCF-7, SKBR3, and HT-29 was performed. The biodistribution of these radiotracers was evaluated in normal and U-87 MG Xenografted models. Finally, 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were applied for in vivo imaging in U-87 MG Xenografted models. RESULTS Specific binding study indicates that 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can recognize 5-HT7R of U87-MG cell line. The biodistribution study in normal mice indicates that the brain uptake of 99mTc(CO)3-[6] and 99mTc(CO)3-[7] is the highest at 30 min post-injection (0.8 ± 0.25 and 0.64 ± 0.18%ID/g, respectively). The data of the biodistribution study in the U87-MG xenograft model revealed that these radiotracers could accumulate in the tumor site, and the highest tumor uptake was observed at 60 min post-injection (3.38 ± 0.65 and 3.27 ± 0.5%ID/g, respectively). The injection of pimozide can block the tumor's radiotracer uptake, indicating the binding of these radiotracers to the 5-HT7R. The imaging study in the xenograft model also confirms the biodistribution data. The acquired images clearly show the tumor site, and the tumor-to-muscle ratio for 99mTc(CO)3-[6] and 99mTc(CO)3-[7] at 60 min was 3.33 and 3.88, respectively. CONCLUSIONS: 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can visualize tumor in the U87-MG xenograft model due to their affinity toward 5-HT7R.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Karimi M, Mardanshahi A, Irannejad H, Mohammad Abedi S, Molavipordanjani S. Synthesis and evaluation of 99mTc-labeled 1-(2-Pyridyl)piperazine derivatives as radioligands for 5HT 7 receptors. Bioorg Chem 2023; 135:106486. [PMID: 36965286 DOI: 10.1016/j.bioorg.2023.106486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Glioblastoma multiform (GBM) is one of the most aggressive tumors of the central nervous system in humans. GBM overexpresses serotonin-7 receptors (5-HT7Rs); hence, this study aims to develop 5-HT7R targeted radiotracers. Aryl piperazine derivatives can act as ligands for 5-HT7R. Therefore, compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were synthesized and radiolabeled with 99mTcN2+ core. Radiolabeled 6 and 7 (99mTcN-[6] and 99mTcN-[7]) were prepared with high radiochemical purity (RCP > 96%). They displayed high affinity toward U-87 MG cell line 5-HT7R. The calculated Ki for 99mTcN-[7] was lower than that of 99mTcN-[6] (14.85 ± 0.32 vs 22.57 ± 0.73 nM) which indicates the higher affinity of 99mTcN-[7] toward 5-HT7R. A molecular docking study also confirmed the binding of these radiotracers to 5-HT7R. The biodistribution study in normal mice revealed that 99mTcN-[7] has the highest brain accumulation at 30 min post-injection (0.54 ± 0.12 %ID/g) while the uptake of 99mTcN-[6] is much lower (0.14 ± 0.02 %ID/g). The biodistribution study in the xenograft model confirms that the radiotracers recognize the tumor site. 99mTcN-[6], and 99mTcN-[7] showed the highest tumor uptake at 1-hour post-injection (5.44 ± 0.58 vs 4.94 ± 1.65 %ID/g) and tumor-to-muscle ratios were (4.61 vs. 5.61). The injection of pimozide blocks the receptors and significantly reduces the tumor-to-muscle ratios at 1-hour post-injection to 0.81 and 0.31, respectively. In correlation with in vitro study, 99mTcN-[6] and 99mTcN-[7] visualize the tumor site in U-87 MG glioma xenografted nude mice and display the tumor-to-muscle ratios of 7.05 and 6.03.
Collapse
Affiliation(s)
- Maryam Karimi
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Ramezani Farani M, Aminzadeh Jahromi N, Ali V, Ebrahimpour A, Salehian E, Shafiee Ardestani M, Seyedhamzeh M, Ahmadi S, Sharifi E, Ashrafizadeh M, Rabiee N, Makvandi P. Detection of Dopamine Receptors Using Nanoscale Dendrimer for Potential Application in Targeted Delivery and Whole-Body Imaging: Synthesis and In Vivo Organ Distribution. ACS APPLIED BIO MATERIALS 2022; 5:1744-1755. [DOI: 10.1021/acsabm.2c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Negin Aminzadeh Jahromi
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Vahid Ali
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, 19585-466 Rasht, Iran
| | - Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Elnaz Salehian
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mohammad Seyedhamzeh
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80078, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|