1
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Klußmann M, Stillger K, Ruppel M, Sticker CL, Neundorf I. Investigating the impact of thiol reactivity and disulfide formation on cellular uptake of cell-permeable peptides. J Pept Sci 2024; 30:e3604. [PMID: 38651525 DOI: 10.1002/psc.3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Cell-penetrating peptides (CPPs) have been explored as versatile tools to transport various molecules into cells. The uptake mechanism of CPPs is still not clearly understood and most probably depends on several factors like the nature of the CPP itself, the attached cargo, the investigated cell system, and other experimental conditions, such as temperature and concentration. One of the first steps of internalization involves the interaction of CPPs with negatively charged molecules present at the outer layer of the cell membrane. Recently, thiol-mediated uptake has been found to support the effective translocation of sulfhydryl-bearing substances that would actually not be cell-permeable. Within this work, we aimed to understand the relevance of thiol reactivity for the uptake mechanism of cysteine-containing CPPs that we have developed previously in our group. Therefore, we compared the two peptides, sC18-Cys and CaaX-1, in their single reduced and dimeric disulfide versions. Cytotoxicity, intracellular accumulation, and impact on the internalization process of the disulfides were investigated in HeLa cells. Both disulfide CPPs demonstrated significantly stronger cytotoxic effects and membrane activity compared with their reduced counterparts. Notably, thiol-mediated uptake could be excluded as a main driver for translocation, showing that peptides like CaaX-1 are most likely taken up by other mechanisms.
Collapse
Affiliation(s)
- Merlin Klußmann
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Melina Ruppel
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Morimoto K, Ishitobi J, Noguchi K, Kira R, Kitayama Y, Goto Y, Fujiwara D, Michigami M, Harada A, Takatani-Nakase T, Fujii I, Futaki S, Kanada M, Nakase I. Extracellular Microvesicles Modified with Arginine-Rich Peptides for Active Macropinocytosis Induction and Delivery of Therapeutic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17069-17079. [PMID: 38563247 PMCID: PMC11011658 DOI: 10.1021/acsami.3c14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), transfer bioactive molecules from donor to recipient cells in various pathophysiological settings, thereby mediating intercellular communication. Despite their significant roles in extracellular signaling, the cellular uptake mechanisms of different EV subpopulations remain unknown. In particular, plasma membrane-derived MVs are larger vesicles (100 nm to 1 μm in diameter) and may serve as efficient molecular delivery systems due to their large capacity; however, because of size limitations, receptor-mediated endocytosis is considered an inefficient means for cellular MV uptake. This study demonstrated that macropinocytosis (lamellipodia formation and plasma membrane ruffling, causing the engulfment of large fluid volumes outside cells) can enhance cellular MV uptake. We developed experimental techniques to induce macropinocytosis-mediated MV uptake by modifying MV membranes with arginine-rich cell-penetrating peptides for the intracellular delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Jojiro Ishitobi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kosuke Noguchi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ryoichi Kira
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Daisuke Fujiwara
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Masataka Michigami
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Masamitsu Kanada
- Institute
for Quantitative Health Science and Engineering (IQ), Michigan State
University, East Lansing, Michigan 48824, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
4
|
Xu YP, Jiang T, Yang XF, Chen ZB. Methods, Mechanisms, and Application Prospects for Enhancing Extracellular Vesicle Uptake. Curr Med Sci 2024; 44:247-260. [PMID: 38622425 DOI: 10.1007/s11596-024-2861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Extracellular vesicles (EVs) are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity, natural functionality, and excellent biocompatibility. However, limitations such as low uptake efficiency, insufficient production, and inhomogeneous performance undermine their potential. To address these issues, numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades. In this review, we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake. In addition, we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.
Collapse
Affiliation(s)
- Ying-Peng Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Fan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhen-Bing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Nicolosi D, Petronio Petronio G, Russo S, Di Naro M, Cutuli MA, Russo C, Di Marco R. Innovative Phospholipid Carriers: A Viable Strategy to Counteract Antimicrobial Resistance. Int J Mol Sci 2023; 24:15934. [PMID: 37958915 PMCID: PMC10648799 DOI: 10.3390/ijms242115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The overuse and misuse of antibiotics have led to the emergence and spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria strains, usually associated with poorer patient outcomes and higher costs. In order to preserve the usefulness of these life-saving drugs, it is crucial to use them appropriately, as also recommended by the WHO. Moreover, innovative, safe, and more effective approaches are being investigated, aiming to revise drug treatments to improve their pharmacokinetics and distribution and to reduce the onset of drug resistance. Globally, to reduce the burden of antimicrobial resistance (AMR), guidelines and indications have been developed over time, aimed at narrowing the use and diminishing the environmental spread of these life-saving molecules by optimizing prescriptions, dosage, and times of use, as well as investing resources into obtaining innovative formulations with better pharmacokinetics, pharmacodynamics, and therapeutic results. This has led to the development of new nano-formulations as drug delivery vehicles, characterized by unique structural properties, biocompatible natures, and targeted activities such as state-of-the-art phospholipid particles generally grouped as liposomes, virosomes, and functionalized exosomes, which represent an attractive and innovative delivery approach. Liposomes and virosomes are chemically synthesized carriers that utilize phospholipids whose nature is predetermined based on their use, with a long track record as drug delivery systems. Exosomes are vesicles naturally released by cells, which utilize the lipids present in their cellular membranes only, and therefore, are highly biocompatible, with investigations as a delivery system having a more recent origin. This review will summarize the state of the art on microvesicle research, liposomes, virosomes, and exosomes, as useful and effective tools to tackle the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Stefano Russo
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University (HBIGS), 68167 Mannheim, Germany
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Marco Alfio Cutuli
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
- Consorzio Interuniversitario in Ingegneria e Medicina (COIIM), Azienda Sanitaria Regionale del Molise ASReM, UOC Governance del Farmaco, 86100 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| |
Collapse
|
6
|
Omura M, Morimoto K, Araki Y, Hirose H, Kawaguchi Y, Kitayama Y, Goto Y, Harada A, Fujii I, Takatani-Nakase T, Futaki S, Nakase I. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47855-47865. [PMID: 37792057 PMCID: PMC10592309 DOI: 10.1021/acsami.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.
Collapse
Affiliation(s)
- Mika Omura
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yurina Araki
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Hisaaki Hirose
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s
University, 11-68, Koshien
Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
7
|
Wang Y, Jiang M, Zheng X, He Y, Ma X, Li J, Pu K. Application of exosome engineering modification in targeted delivery of therapeutic drugs. Biochem Pharmacol 2023; 215:115691. [PMID: 37481135 DOI: 10.1016/j.bcp.2023.115691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Cancer is the leading cause of premature death in humans. Scientists have developed several therapeutic drugs for cancer treatment. However, drug delivery faces many problems. First, traditional drugs do not target tumors and are prone to causing significant toxic side effects. Second, suitable drug carriers are essential for improving drug delivery to tumors or circulating cancer cells. Exosomes are natural extracellular vesicles with low immunogenicity and prolonged blood circulation in vivo. These characteristics render exosomes ideal drug carriers. This review highlights the properties of exosomes and mechanisms of exosome biogenesis. It also summarizes the engineering modification methods for enhancing exosome yield, targeting, and drug-loading capacity.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Min Jiang
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuewen Zheng
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiran He
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Jiong Li
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Kefeng Pu
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
8
|
Huang X, Li A, Xu P, Yu Y, Li S, Hu L, Feng S. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles. J Nanobiotechnology 2023; 21:184. [PMID: 37291577 DOI: 10.1186/s12951-023-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising platform for gene delivery owing to their natural properties and phenomenal functions, being able to circumvent the significant challenges associated with toxicity, problematic biocompatibility, and immunogenicity of the standard approaches. These features are of particularly interest for targeted delivery of the emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. However, the current efficiency of EV-meditated transport of CRISPR/Cas components remains insufficient due to numerous exogenous and endogenous barriers. Here, we comprehensively reviewed the current status of EV-based CRISPR/Cas delivery systems. In particular, we explored various strategies and methodologies available to potentially improve the loading capacity, safety, stability, targeting, and tracking for EV-based CRISPR/Cas system delivery. Additionally, we hypothesise the future avenues for the development of EV-based delivery systems that could pave the way for novel clinically valuable gene delivery approaches, and may potentially bridge the gap between gene editing technologies and the laboratory/clinical application of gene therapies.
Collapse
Affiliation(s)
- Xiaowen Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Peng Xu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China.
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
9
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
10
|
VanDyke D, Taylor JD, Kaeo KJ, Hunt J, Spangler JB. Biologics-based degraders - an expanding toolkit for targeted-protein degradation. Curr Opin Biotechnol 2022; 78:102807. [PMID: 36179405 PMCID: PMC9742328 DOI: 10.1016/j.copbio.2022.102807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation (TPD) is a broadly useful proteome editing tool for biological research and therapeutic development. TPD offers several advantages over functional inhibition alone, including the ability to target previously undruggable proteins and the substantial and sustained knockout of protein activity. A variety of small molecule approaches hijack endogenous protein degradation machinery, but are limited to proteins with a cytosolic domain and suitable binding pocket. Recently, biologics-based methods have expanded the TPD toolbox by allowing access to extracellular and surface-exposed proteins and increasing target specificity. Here, we summarize recent advances in the use of biologics to deplete proteins through either the ubiquitin-proteasome system or the lysosomal degradation pathway, and discuss routes to their effective delivery as potential therapeutic interventions.
Collapse
Affiliation(s)
- Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Kyle J Kaeo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Hunt
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
12
|
Integrated Transcriptome and Proteome Analysis Provides Insight into the Ribosome Inactivating Proteins in Plukenetia volubilis Seeds. Int J Mol Sci 2022; 23:ijms23179562. [PMID: 36076961 PMCID: PMC9455912 DOI: 10.3390/ijms23179562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Plukenetia volubilis is a highly promising plant with high nutritional and economic values. In our previous studies, the expression levels of ricin encoded transcripts were the highest in the maturation stage of P. volubilis seeds. The present study investigated the transcriptome and proteome profiles of seeds at two developmental stages (Pv-1 and Pv-2) using RNA-Seq and iTRAQ technologies. A total of 53,224 unigenes and 6026 proteins were identified, with functional enrichment analyses, including GO, KEGG, and KOG annotations. At two development stages of P. volubilis seeds, 8815 unique differentially expressed genes (DEGs) and 4983 unique differentially abundant proteins (DAPs) were identified. Omics-based association analysis showed that ribosome-inactivating protein (RIP) transcripts had the highest expression and abundance levels in Pv-2, and those DEGs/DAPs of RIPs in the GO category were involved in hydrolase activity. Furthermore, 21 RIP genes and their corresponding amino acid sequences were obtained from libraries produced with transcriptome analysis. The analysis of physicochemical properties showed that 21 RIPs of P. volubilis contained ricin, the ricin_B_lectin domain, or RIP domains and could be divided into three subfamilies, with the largest number for type II RIPs. The expression patterns of 10 RIP genes indicated that they were mostly highly expressed in Pv-2 and 4 transcripts encoding ricin_B_like lectins had very low expression levels during the seed development of P. volubilis. This finding would represent valuable evidence for the safety of oil production from P. volubilis for human consumption. It is also notable that the expression level of the Unigene0030485 encoding type I RIP was the highest in roots, which would be related to the antiviral activity of RIPs. This study provides a comprehensive analysis of the physicochemical properties and expression patterns of RIPs in different organs of P. volubilis and lays a theoretical foundation for further research and utilization of RIPs in P. volubilis.
Collapse
|
13
|
Hirase S, Aoki A, Hattori Y, Morimoto K, Noguchi K, Fujii I, Takatani-Nakase T, Futaki S, Kirihata M, Nakase I. Dodecaborate-Encapsulated Extracellular Vesicles with Modification of Cell-Penetrating Peptides for Enhancing Macropinocytotic Cellular Uptake and Biological Activity in Boron Neutron Capture Therapy. Mol Pharm 2022; 19:1135-1145. [PMID: 35298163 DOI: 10.1021/acs.molpharmaceut.1c00882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Boron neutron capture therapy (BNCT) is a radiation therapy for cancer. In BNCT, the internalization of boron-10 atoms by cancer cells induces cell death through the generation of α particles and recoiling lithium-7 nuclei when irradiated with low-energy thermal neutrons. In this study, we aimed to construct exosomes [extracellular vesicles (EVs)]-based drug delivery technology in BNCT. Because of their pharmaceutical advantages, such as controlled immune responses and effective usage of cell-to-cell communication, EVs are potential next-generation drug delivery carriers. In this study, we successfully developed polyhedral borane anion-encapsulated EVs with modification of hexadeca oligoarginine, which is a cell-penetrating peptide, on the EV membrane to induce the actin-dependent endocytosis pathway, macropinocytosis, which leads to efficient cellular uptake and remarkable cancer cell-killing BNCT activity. The simple and innovative technology of the EV-based delivery system with "cassette" modification of functional peptides will be applicable not only for BNCT but also for a wide variety of therapeutic methodologies.
Collapse
Affiliation(s)
- Shiori Hirase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ayako Aoki
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yoshihide Hattori
- Research Center for BNCT, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kenta Morimoto
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kosuke Noguchi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.,Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
14
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
15
|
Nakase I, Takatani-Nakase T. Exosomes: Breast cancer-derived extracellular vesicles; recent key findings and technologies in disease progression, diagnostics, and cancer targeting. Drug Metab Pharmacokinet 2021; 42:100435. [PMID: 34922046 DOI: 10.1016/j.dmpk.2021.100435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most frequently diagnosed types of cancer in women. Metastasis, particularly to the lungs and brain, increases mortality in breast cancer patients. Recently, breast cancer-related exosomes have received significant attention because of their key role in breast cancer progression. As a result, numerous exosome-based therapeutic tools for diagnosis and treatment have been developed, and their biological and chemical mechanisms have been explored. This review summarizes up-to-date advanced key findings and technologies in breast cancer progression, diagnostics, and targeting. We focused on recent research on the basic biology of exosomes and disease-related exosomal genes and proteins, as well as their signal transduction in cell-to-cell communications, diagnostic markers, and exosome-based antibreast cancer technologies. We also paid special attention to technologies employing exosomes modified with functional peptides for the targeted delivery of therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan.
| |
Collapse
|