1
|
Mao Y, Zhang X, Sun Y, Shen Z, Zhong C, Nie L, Shavandi A, Yunusov KE, Jiang G. Fabrication of lidocaine-loaded polymer dissolving microneedles for rapid and prolonged local anesthesia. Biomed Microdevices 2024; 26:9. [PMID: 38189892 DOI: 10.1007/s10544-024-00695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
There is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations. In this study, a dissolving microneedles (MNs) system made of composite matrix materials of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and sodium hyaluronate (HA) was successfully developed for the loading of lidocaine hydrochloride (LidH). The morphology, size and mechanical properties of the MNs were also investigated. After the insertion of MNs into the skin, the matrix at the tip of the MNs was swelled and dissolved by absorption of interstitial fluid, leading to a rapid release of loaded LidH from MNs' tips. And the LidH in the back patching was diffused into deeper skin tissue through microchannels created by MNs insertion, forming a prolonged anesthesia effect. In addition, the back patching of MNs could be acted as a drug reservoir to form a prolonged local anesthesia effect. The results showed that LidH MNs provided a superior analgesia up to 8 h, exhibiting a rapid and long-lasting analgesic effects. Additionally, tissue sectioning and in vitro cytotoxicity tests indicated that the MNs patch we developed had a favorable biosafety profile.
Collapse
Affiliation(s)
- Yanan Mao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Xiufeng Zhang
- Department of Colorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhong Shen
- Department of Colorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Chao Zhong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Gadhave DG, Sugandhi VV, Kokare CR. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Res 2024; 1822:148674. [PMID: 37952871 DOI: 10.1016/j.brainres.2023.148674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune 413130, Maharashtra, India.
| | - Vrashabh V Sugandhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Chandrakant R Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
3
|
Mikhaylov VI, Torlopov MA, Vaseneva IN, Legki PV, Paderin NM, Martakov IS, Sitnikov PA. Anti-Alzheimer Drug Delivery via Pickering Emulsions Stabilized by Plate-like Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11769-11781. [PMID: 37556390 DOI: 10.1021/acs.langmuir.3c01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this work, we studied for the first time the formation of olive oil emulsions in water stabilized by plate-like nanocrystals with the supramolecular structure of cellulose II (pCNC). Effects of storage, pCNC concentration, and NaCl on the stability and properties of Pickering emulsions, including the creaming index, droplet size, zeta potential, acid-base surface properties, and rheology, were studied. A significant influence of the shape of nanoparticles (compared to the classical rod-like shape) on the stability parameters and rheological characteristics of emulsions is shown. Plate-like cellulose nanocrystals at a concentration of 16 g/L are able to form delamination-resistant emulsions without added electrolytes. The viscosity of pCNC-stabilized emulsions tends to decrease with increasing electrolyte concentration in the system, which is not characteristic of rod-like CNC-stabilized emulsions. This effect in pCNC-stabilized emulsions assumedly can be associated both with weak mechanical engagement between drops due to the shape of stabilizer particles and with an insignificant participation of background electrolyte cations in the formation of interdroplet interactions. Therefore, the resulting aggregates are unstable and easily destroyed, even under weak mechanical stress. As a consequence, the acid-base properties of the pCNC surface are practically independent of the emulsion preparation method (with or without electrolyte) as well as the concentration of the background electrolyte. The reduced viscosity of pCNC-stabilized emulsions in the presence of an electrolyte, coupled with the absence of acute toxicity, allows us to recommend them as a convenient oral delivery system for fat-soluble, biologically active substances. Our emulsions carrying donepezil (an anti-Alzheimer drug) showed better performance than a solution of donepezil hydrochloride in preventing memory impairment tested on laboratory mice.
Collapse
Affiliation(s)
- Vasily I Mikhaylov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Mikhail A Torlopov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Irina N Vaseneva
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Philipp V Legki
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Nikita M Paderin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 50 Pervomayskaya St., 167982 Syktyvkar, Russia
| | - Ilia S Martakov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Petr A Sitnikov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| |
Collapse
|
4
|
Ji YB, Lee S, Ju HJ, Kim HE, Noh JH, Choi S, Park K, Lee HB, Kim MS. Preparation and evaluation of injectable microsphere formulation for longer sustained release of donepezil. J Control Release 2023; 356:43-58. [PMID: 36841288 DOI: 10.1016/j.jconrel.2023.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
In this study, donepezil-loaded PLGA and PLA microspheres (Dp-PLGA-M/Dp-PLA-M) and Dp-PLA-M wrapped in a polyethylene glycol-b-polycaprolactone (PC) hydrogel (Dp-PLA-M/PC) were prepared to reduce the dosing frequency of injections to treat Alzheimer's disease patients. Dp-PLGA-M and Dp-PLA-M with a uniform particle size distribution were repeatably fabricated in nearly quantitative yield and with high encapsulated Dp yields using an ultrasonic atomizer. The injectability and in vitro and in vivo Dp release, biodegradation, and inflammatory response elicited by the Dp-PLGA-M, Dp-PLA-M, and Dp-PLA-M/PC formulations were then compared. All injectable formulations showed good injectability with ease of injection, even flow, and no clogging using a syringe needle under 21-G. The injections required a force of <1 N. According to the biodegradation rate of micro-CT, GPC and NMR analyses, the biodegradation of Dp-PLA-M was slower than that of Dp-PLGA-M, and the biodegradation rate of Dp-PLA-M/PC was also slower. In the Dp release experiment, Dp-PLA-M sustained Dp for longer compared with Dp-PLGA-M. Dp-PLA-M/PC exhibited a longer sustained release pattern of two months. In vivo bioavailability of Dp-PLA-M/PC was almost 1.4 times higher than that of Dp-PLA-M and 1.9 times higher than that of Dp-PLGA-M. The variations in the Dp release patterns of Dp-PLGA-M and Dp-PLA-M were explained by differences in the degradation rates of PLGA and PLA. The sustained release of Dp by Dp-PLA-M/PC was attributed to the fact that the PC hydrogel served as a wrapping matrix for Dp-PLA-M, which could slow down the biodegradation of PLA-M, thus delaying the release of Dp from Dp-PLA-M. Dp-PLGA-M induced a higher inflammatory response compared to Dp-PLA-M/PC, suggesting that the rapid degradation of PLGA triggered a strong inflammatory response. In conclusion, Dp-PLA-M/PC is a promising injectable Dp formulation that could be used to reduce the dosing frequency of Dp injections.
Collapse
Affiliation(s)
- Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Soyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hee Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University, 206 S. Intramural Drive, West Lafayette, Indiana 47907-1791, United States of America
| | - Hai Bang Lee
- Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea; Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Republic of Korea.
| |
Collapse
|
5
|
Zhao ZQ, Liang L, Hu LF, He YT, Jing LY, Liu Y, Chen BZ, Guo XD. Subcutaneous Implantable Microneedle System for the Treatment of Alzheimer's Disease by Delivering Donepezil. Biomacromolecules 2022; 23:5330-5339. [PMID: 36454623 DOI: 10.1021/acs.biomac.2c01155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To alleviate the dilemma of drug administration in Alzheimer's disease (AD) patients, it is of great significance to develop a new drug delivery system. In this study, a subcutaneously implanted microneedle (MN) device with a swellable gelatin methacryloyl (GelMA) needle body and a dissolvable polyvinyl alcohol (PVA) backing layer was designed. The backing layer quickly dissolved once the MN was introduced into the subcutaneous, and the hydrogel needles were implanted in the subcutaneous to enable prolonged drug release. Compared with oral administration, the MN system offers the benefits of a high administration rate, a fast onset of effect, and a longer duration of action. By detecting the concentration of acetylcholine (ACH) and Aβ 1-42, it was found that MN administration exhibited a stronger therapeutic effect. The biological safety of the MN system was also assessed, and no obvious signs of hemolysis, cytotoxicity, and inflammatory reaction were observed. Together, these findings suggested that the MN system is a convenient, efficient, and safe method of delivering donepezil hydrochloride (DPH) and may provide AD patients with a novel medicine administration option.
Collapse
Affiliation(s)
- Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liu Fu Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Li Yue Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.,High-Tech Research Institute, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
6
|
Donepezil hydrochloride-reinforced cellulose nanocrystal-aggregated gel structure for long-acting drug delivery. Carbohydr Polym 2022; 296:119887. [DOI: 10.1016/j.carbpol.2022.119887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022]
|
7
|
He YT, Liang L, Zhao ZQ, Hu LF, Fei WM, Chen BZ, Cui Y, Guo XD. Advances in porous microneedle systems for drug delivery and biomarker detection: A mini review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zussy C, John R, Urgin T, Otaegui L, Vigor C, Acar N, Canet G, Vitalis M, Morin F, Planel E, Oger C, Durand T, Rajshree SL, Givalois L, Devarajan PV, Desrumaux C. Intranasal Administration of Nanovectorized Docosahexaenoic Acid (DHA) Improves Cognitive Function in Two Complementary Mouse Models of Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050838. [PMID: 35624701 PMCID: PMC9137520 DOI: 10.3390/antiox11050838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a class of fatty acids that are closely associated with the development and function of the brain. The most abundant PUFA is docosahexaenoic acid (DHA, 22:6 n-3). In humans, low plasmatic concentrations of DHA have been associated with impaired cognitive function, low hippocampal volumes, and increased amyloid deposition in the brain. Several studies have reported reduced brain DHA concentrations in Alzheimer’s disease (AD) patients’ brains. Although a number of epidemiological studies suggest that dietary DHA consumption may protect the elderly from developing cognitive impairment or dementia including AD, several review articles report an inconclusive association between omega-3 PUFAs intake and cognitive decline. The source of these inconsistencies might be because DHA is highly oxidizable and its accessibility to the brain is limited by the blood–brain barrier. Thus, there is a pressing need for new strategies to improve DHA brain supply. In the present study, we show for the first time that the intranasal administration of nanovectorized DHA reduces Tau phosphorylation and restores cognitive functions in two complementary murine models of AD. These results pave the way for the development of a new approach to target the brain with DHA for the prevention or treatment of this devastating disease.
Collapse
Affiliation(s)
- Charleine Zussy
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Rijo John
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Théo Urgin
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Léa Otaegui
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Niyazi Acar
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Geoffrey Canet
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Mathieu Vitalis
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Françoise Morin
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Camille Oger
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Shinde L. Rajshree
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Laurent Givalois
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Padma V. Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Catherine Desrumaux
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
- LIPSTIC LabEx, 21000 Dijon, France
- Correspondence: ; Tel.: +33-467-14-36-89; Fax: +33-467-14-33-86
| |
Collapse
|
9
|
Zhao ZQ, Zhang BL, Chu HQ, Liang L, Chen BZ, Zheng H, Guo XD. A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia. BIOMATERIALS ADVANCES 2022; 133:112620. [PMID: 35525737 DOI: 10.1016/j.msec.2021.112620] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Considering the staggering global prevalence of local pain affecting hundreds of million individuals, it is of great significance to develop advanced dosage forms or delivery systems for analgesic therapy to fulfill clinical applicability. In this study, a hydrogel microneedles (MNs) system made out of gelatin-methacryloyl (GelMA) was designed to deliver lidocaine hydrochloride (LiH) in a sustained manner, and the drug loading capacity of the GelMA MNs was increased considerably by using the backing layer reservoir. The in vitro and in vivo tests showed that the fabricated GelMA MNs are strong enough for reliable skin application, and achieve high drug delivery efficiency as compared with the commercial lidocaine patches. The Spared-nerve injury (SNI) model of rats was also prepared to test behavioral pain sensitivity in response to mechanical stimuli, which proved that the LiH/GelMA MNs can enhance and prolong the anesthetic effect of LiH. In addition, with biosafety evaluation in rats, the MNs treated site restored to normal appearance within several hours of application and no dermatosis-related side effects or behavior disorders were observed during the experiment. Together these results indicated that the use of GelMA MNs for transdermal delivery of LiH is an effective, safe and simple treatment method to provide a better choice for local long-lasting analgesia.
Collapse
Affiliation(s)
- Ze Qiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bao Li Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hua Qing Chu
- Department of Anesthesiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Ling Liang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
10
|
Baruah P, Ray D, Konthoujam I, Das A, Chakrabarty S, Aguan K, Mitra S. Therapeutic opportunities of surface-active ionic liquids: a case study on acetylcholinesterase, citrate synthase and HeLa cell lines. NEW J CHEM 2022. [DOI: 10.1039/d2nj04365c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In concurrence with the pursuit of clean and green medium, recent years have witnessed an unprecedented rise in the usage of ionic liquids (ILs).
Collapse
Affiliation(s)
- Prayasee Baruah
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Dhiman Ray
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793 022, India
| | - Abhinandan Das
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| |
Collapse
|