1
|
Dong Y, Ding Z, Bai Y, Lu L, Dong T, Li Q, Liu J, Chen S. Core-Shell Gel Nanofiber Scaffolds Constructed by Microfluidic Spinning toward Wound Repair and Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404433. [PMID: 39005186 PMCID: PMC11497022 DOI: 10.1002/advs.202404433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Zongkun Ding
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Yuting Bai
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ling‐Yu Lu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ting Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ji‐Dong Liu
- School of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| |
Collapse
|
2
|
Qosim N, Majd H, Huo S, Edirisinghe M, Williams GR. Hydrophilic and hydrophobic drug release from core (polyvinylpyrrolidone)-sheath (ethyl cellulose) pressure-spun fibers. Int J Pharm 2024; 654:123972. [PMID: 38458404 DOI: 10.1016/j.ijpharm.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
A core-sheath structure is one of the methods developed to overcome the challenges often faced when using monolithic fibers for drug delivery. In this study, fibers based on polyvinylpyrrolidone (core) and ethyl cellulose (sheath) were successfully produced using a novel core-sheath pressure-spinning process. For comparison, these two polymers were also processed into as blend fibers. All samples were then investigated for their performances in releasing water-soluble ampicillin (AMP) and poorly water-soluble ibuprofen (IBU) model drugs. Scanning electron,digital and confocal microscopy confirmed that fibers with a core-sheath structure were successfully made. Fourier transform infrared spectroscopy showed the success of the pressure-spinning technique in encapsulating AMP/IBU in all fiber samples. Compared to blend fibers, the core-sheath fibers had better performance in encapsulating both water-soluble and poorly water-soluble drugs. Moreover, the core-sheath structure was able to reduce the initial burst release and provided a better sustained release profile than the blend fiber analog. In conclusion, the pressure-spinning method was capable of producing core-sheath and blend fibers that could be used for the loading of either hydrophilic or hydrophobic drugs for controlled drug delivery systems.
Collapse
Affiliation(s)
- Nanang Qosim
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Mechanical Engineering, Politeknik Negeri Malang, Jl. Soekarno Hatta No.9, Malang 65141, Jawa Timur, Indonesia
| | - Hamta Majd
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Suguo Huo
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
3
|
Hashemi SMJ, Enderami SE, Barzegar A, Mansour RN. Differentiation of Wharton's Jelly-derived mesenchymal stem cells into insulin-producing beta cells with the enhanced functional level on electrospun PRP-PVP-PCL/PCL fiber scaffold. Tissue Cell 2024; 87:102318. [PMID: 38377632 DOI: 10.1016/j.tice.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Diabetes is a global problem that threatens human health. Cell therapy methods using stem cells, and tissue engineering of pancreatic islets as new therapeutic approaches have increased the chances of successful diabetes treatment. In this study, to differentiate Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) into insulin-producing cells (IPCs) with improved maturity, and function, platelet-rich plasma (PRP)-Polyvinylpyrrolidone (PVP)-Polycaprolactone (PCL)/PCL scaffold was designed. The two-dimensional (2D) control group included cell culture without differentiation medium, and the experimental groups included 2D, and three-dimensional (3D) groups with pancreatic beta cell differentiation medium. WJ-MSCs-derived IPCs on PRP-PVP-PCL/PCL scaffold took round cluster morphology, the typical pancreatic islets morphology. Real-time PCR, immunocytochemistry, and flowcytometry data showed a significant increase in pancreatic marker genes in WJ-MSCs-derived IPCs on the PRP-PVP-PCL/PCL scaffold compared to the 2D-experimental group. Also, using the ELISA assay, a significant increase in the secretion of insulin, and C-peptide was measured in the WJ-MSCs-derived IPCs of the 3D-experimental group compared to the 2D experimental group, the highest amount of insulin (38 µlU/ml), and C-peptide (43 pmol/l) secretion was in the 3D experimental group, and in response to 25 mM glucose solution, which indicated a significant improvement in the functional level of the WJ-MSCs-derived IPCs in the 3D group. The results showed that the PRP-PVP-PCL/PCL scaffold can provide an appropriate microenvironment for the engineering of pancreatic islets, and the generation of IPCs.
Collapse
Affiliation(s)
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ali Barzegar
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Reyhaneh Nassiri Mansour
- Immunogenetics Research Center, Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Serpelloni S, Williams ME, Caserta S, Sharma S, Rahimi M, Taraballi F. Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin. ACS OMEGA 2024; 9:11701-11717. [PMID: 38496925 PMCID: PMC10938330 DOI: 10.1021/acsomega.3c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
As the population ages, the number of vascular surgery procedures performed increases. Older adults often have multiple comorbidities, such as diabetes and hypertension, that increase the risk of complications from vascular surgery including vascular graft infection (VGI). VGI is a serious complication with significant morbidity, mortality, and healthcare costs. Here, we aimed to develop a nanofibrous chitosan-based coating for vascular grafts loaded with different concentrations of the vancomycin antibiotic vancomycin (VAN). Blending chitosan with poly(vinyl alcohol) or poly(ethylene oxide) copolymers improved solubility and ease of spinning. Thermal gravimetric analysis and Fourier transform infrared spectroscopy confirmed the presence of VAN in the nanofibrous membranes. Kinetics of VAN release from the nanofibrous mats were evaluated using high-performance liquid chromatography, showing a burst followed by sustained release over 24 h. To achieve longer sustained release, a poly(lactic-co-glycolic acid) coating was applied, resulting in extended release of up to 7 days. Biocompatibility assessment using human umbilical vein endothelial cells demonstrated successful attachment and viability of the nanofiber patches. Our study provides insights into the development of a drug delivery system for vascular grafts aimed at preventing infection during implantation, highlighting the potential of electrospinning as a promising technique in the field of vascular surgery.
Collapse
Affiliation(s)
- Stefano Serpelloni
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| | - Michael Ellis Williams
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Reproductive
Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8QA, U.K.
| | - Sergio Caserta
- Department
of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80138, Italy
| | - Shashank Sharma
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Maham Rahimi
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| |
Collapse
|
5
|
Liu Y, Chen X, Lin X, Yan J, Yu DG, Liu P, Yang H. Electrospun multi-chamber core-shell nanofibers and their controlled release behaviors: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1954. [PMID: 38479982 DOI: 10.1002/wnan.1954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 06/06/2024]
Abstract
Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yubo Liu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Xiangde Lin
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiayong Yan
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Hui Yang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Sheikhi S, Ghassemi A, Sajadi SM, Hashemian M. Comparison of the mechanical characteristics of produced nanofibers by electrospinning process based on different collectors. Heliyon 2024; 10:e23841. [PMID: 38205316 PMCID: PMC10776987 DOI: 10.1016/j.heliyon.2023.e23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Polymer nanofiber in nanofibrous membrane produced by electrospinning process can be employed in various fields such as medical engineering, environmental engineering, biotechnology, energy, tissue scaffolds, and protective clothing. In these applications, the mechanical properties of the nanofibrous membrane should be studied to get long-life durability. In the current study, nanofibers are obtained from electrospinning of polyacrylonitrile (PAN) solution in Dimethylformamide (DFM) solvent. Nanofibers are produced with disc, cylinder, wire drum, parallel bars and polygon collectors and their mechanical properties are examined and compared. For this study, a tensile testing machine with special jaws was applied. According to the Scanning Electron Microscope (SEM) images, the average diameter of the produced nanofibers ranges from 300 to 340 nm. In addition, nanofiber layers have a thickness of 0.03 mm. They were cut in the 10 × 25 mm2 size; then, the tensile test was performed. Results show that produced nanofiber layers by rotating cylinder collector have the highest ultimate strength while the disk collector results in the highest Young's modulus in produced samples.
Collapse
Affiliation(s)
- Sajjad Sheikhi
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Aazam Ghassemi
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | | | - Mohammad Hashemian
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| |
Collapse
|
7
|
Shangguan W, Xu H, Ding W, Chen H, Mei X, Zhao P, Cao C, Huang Q, Cao L. Nano-Micro Core-Shell Fibers for Efficient Pest Trapping. NANO LETTERS 2023; 23:11809-11817. [PMID: 38048290 DOI: 10.1021/acs.nanolett.3c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Insect sex pheromones as an alternative to chemical pesticides hold promising prospects in pest control. However, their burst release and duration need to be optimized. Herein, pheromone-loaded core-shell fibers composed of degradable polycaprolactone and polyhydroxybutyrate were prepared by coaxial electrospinning. The results showed that this core-shell fiber had good hydrophobic performance and thermal stability, and the light transmittance in the ultraviolet band was only below 40%, which provided protection to pheromones. The core-shell structure alleviated the burst release of pheromone in the fiber and extended the release time to about 133 days. In the field, the pheromone-loaded core-shell fibers showed the same continuous and efficient trapping of Spodoptera litura as the commercial carriers. More importantly, the electrospun fibers combined with biomaterials had a degradability unmatched by commercial carriers. The structure design strategy provides ideas for the innovative design of pheromone carriers and is a potential tool for the management of agricultural pests.
Collapse
Affiliation(s)
- Wenjie Shangguan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Wanlong Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Huiping Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangdong Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengyue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Zarif B, Shabbir S, Shahid R, Noor T, Imran M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem 2023; 429:136841. [PMID: 37459709 DOI: 10.1016/j.foodchem.2023.136841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Proteosomes (P) based on milk fat globule membrane's phospholipids (MPs), whey protein isolate (WPI) and sodium caseinate (CasNa) were developed by ultrasonication to encapsulate β-carotene. Entirely milk-ingredients based proteosomes (WPI-MPs-P and CasNa-MPs-P) revealed homogenous distribution with size diameters < 250 nm. WPI-MPs-P depicted positive ζ-potential values (+15.7 ± 0.5 mV), while CasNa-MPs-P demonstrated negative (-32.5 ± 3.4 mV) values of surface charge, respectively and hydrophilic nature of proteosomes was observed by measuring contact-angle (θ). AFM and SEM exhibited spherical to oval and slightly irregular morphology of nanocarriers. For various concentrations of β-carotene, the highest encapsulation efficiency of β-carotene was 90 ± 0.2% and 92 ± 0.8% in WPI-MPs-P and CasNa-MPs-P respectively. FTIR analyses confirmed the hydrophobic and electrostatic interactions-based encapsulation of β-carotene. Beneficial antioxidant-potential of β-carotene was retained after its encapsulation in the proteosomes. Proteosomes increased the digestive-stability (>50%) and bioaccessibility (>85%) of β-carotene. Thus, milk-ingredients based proteosomes offer a novel-strategy to develop functional dairy products to overcome widespread vitamin-A-deficiency.
Collapse
Affiliation(s)
- Bina Zarif
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
9
|
Geng Y, Williams GR. Developing and scaling up captopril-loaded electrospun ethyl cellulose fibers for sustained-release floating drug delivery. Int J Pharm 2023; 648:123557. [PMID: 39491226 DOI: 10.1016/j.ijpharm.2023.123557] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
In this work ethyl cellulose (EC) was used as the matrix polymer and loaded with captopril, with the goal to fabricate electrospun fibers as potential sustained-release floating gastro-retentive drug delivery systems. Fibers were prepared with monoaxial and coaxial electrospinning, and both bench-top and scaled-up (needle-based) methods were explored. With monoaxial electrospinning, EC-based fibers in the shape of cylinders and with smooth surfaces were obtained both at 1 and 20 mL/h. For coaxial electrospinning, the drug was encapsulated in the core end fibers generated with core/shell feeding rates of 0.5/1 and 5/10 mL/h. The fibers were cylindrical in shape with a wrinkled surface, and confocal microscopy suggested them to have a core/shell structure. X-ray diffraction and differential scanning calorimetry results showed that all the fibers were amorphous. The encapsulation efficiency of all the formulations was almost 100%. Release studies in simulated gastric fluid indicated that the monoaxial electrospun fibers gave slower release profiles compared with a physical mixture of captopril and EC, but there was still an initial "burst" of release at the start of the experiment. Fibers with low drug-loading (9.09% w/w) showed a slower release than fibers with high loading (23.08% w/w). The coaxial fibers exhibited sustained release profiles with reduced initial burst release. Both monoaxial and coaxial fibers could float on the surface of simulated gastric fluid for over 24 hours at 37 °C. After storage under ambient conditions (19-21°C, relative humidity 30-40%) for 8 weeks, all the fibers remained amorphous and the release profiles had no significant changes compared with fresh fibers. This work thus highlights the potential of coaxial electrospinning for fabricating a sustained-release floating gastro-retentive drug delivery system for captopril.
Collapse
Affiliation(s)
- Yuhao Geng
- UCL School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX
| | | |
Collapse
|
10
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Xu X, Lv H, Zhang M, Wang M, Zhou Y, Liu Y, Yu DG. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Surendranath M, Ramesan RM, Nair P, Parameswaran R. Electrospun Mucoadhesive Zein/PVP Fibroporous Membrane for Transepithelial Delivery of Propranolol Hydrochloride. Mol Pharm 2023; 20:508-523. [PMID: 36373686 DOI: 10.1021/acs.molpharmaceut.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucoadhesive drug delivery systems have been extensively studied to effectively reduce the limitations of conventional drug delivery systems. Zein and polyvinyl pyrrolidone (PVP) are appraised for mucoadhesive properties. This study focuses on developing a mechanically stable zein/PVP electrospun membrane for propranolol hydrochloride (PL) transport. Fourier transform infrared, Raman spectra, and swelling studies gave evidence for PVP crosslinking, whereas circular dichroism spectroscopy revealed crosslinking of zein owing to the conformational change from α-helix to β-sheet. A 10 h thermal treatment of zein/PVP imparted 3.92 ± 0.13 MPa tensile strength to the matrix. Thermally crosslinked electrospun zein/PVP matrix showed 22.1 ± 0.1 g mm work of adhesion in porcine buccal mucosa tissue. Qualitative and quantitative evaluation of cytotoxicity in RPMI 2650 has been carried out. The in vitro drug release profile of PL from thermally crosslinked zein/PVP best fitted with the Korsmeyer-Peppas model. Immunostaining of β-catenin adherens junctional protein confirmed the absence of paracellular transport through the junctional opening. Still, drug permeation was observed through the porcine buccal mucosa, attributed to the transcellular transport of PL owing to its lipophilicity. The ex vivo permeation of PL through porcine buccal mucosa was also evaluated.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Prakash Nair
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| |
Collapse
|
13
|
Buchveitz Pires J, Martins Fonseca L, Jéssica Siebeneichler T, Lopes Crizel R, Nardo dos Santos F, Cristina dos Santos Hackbart H, Hüttner Kringel D, Dillenburg Meinhart A, da Rosa Zavareze E, Renato Guerra Dias A. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning: thermal resistance and antioxidant activity. Food Res Int 2022; 162:112111. [DOI: 10.1016/j.foodres.2022.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
14
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
15
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
16
|
Jiang W, Zhao P, Song W, Wang M, Yu DG. Electrospun Zein/Polyoxyethylene Core-Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications. Biomolecules 2022; 12:1110. [PMID: 36009003 PMCID: PMC9405609 DOI: 10.3390/biom12081110] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this work is to develop a novel ultrathin fibrous membrane with a core-sheath structure as antibacterial food packaging film. Coaxial electrospinning was exploited to create the core-sheath structure, by which the delivery regulation of the active substance was achieved. Resveratrol (RE) and silver nanoparticles (AgNPs) were loaded into electrospun zein/polyethylene oxide ultrathin fibers to ensure a synergistic antibacterial performance. Under the assessments of a scanning electron microscope and transmission electron microscope, the ultrathin fiber was demonstrated to have a fine linear morphology, smooth surface and obvious core-sheath structure. X-ray diffraction and Fourier transform infrared analyses showed that RE and AgNPs coexisted in the ultrathin fibers and had good compatibility with the polymeric matrices. The water contact angle experiments were conducted to evaluate the hydrophilicity and hygroscopicity of the fibers. In vitro dissolution tests revealed that RE was released in a sustained manner. In the antibacterial experiments against Staphylococcus aureus and Escherichia coli, the diameters of the inhibition zone of the fiber were 8.89 ± 0.09 mm and 7.26 ± 0.10 mm, respectively. Finally, cherry tomatoes were selected as the packaging object and packed with fiber films. In a practical application, the fiber films effectively reduced the bacteria and decreased the quality loss of cherry tomatoes, thereby prolonging the fresh-keeping period of cherry tomatoes to 12 days. Following the protocols reported here, many new food packaging films can be similarly developed in the future.
Collapse
Affiliation(s)
- Wenlai Jiang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Zhao
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
17
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Huang C, Xu X, Fu J, Yu DG, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel) 2022; 14:3266. [PMID: 36015523 PMCID: PMC9415690 DOI: 10.3390/polym14163266] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
19
|
Electrospun Core–Sheath Nanofibers with Variable Shell Thickness for Modifying Curcumin Release to Achieve a Better Antibacterial Performance. Biomolecules 2022; 12:biom12081057. [PMID: 36008951 PMCID: PMC9406017 DOI: 10.3390/biom12081057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The inefficient use of water-insoluble drugs is a major challenge in drug delivery systems. Core–sheath fibers with various shell thicknesses based on cellulose acetate (CA) were prepared by the modified triaxial electrospinning for the controlled and sustained release of the water-insoluble Chinese herbal active ingredient curcumin. The superficial morphology and internal structure of core–sheath fibers were optimized by increasing the flow rate of the middle working fluid. Although the prepared fibers were hydrophobic initially, the core–sheath structure endowed fibers with better water retention property than monolithic fibers. Core–sheath fibers had flatter sustained-release profiles than monolithic fibers, especially for thick shell layers, which had almost zero-order release for almost 60 h. The shell thickness and sustained release of drugs brought about a good antibacterial effect to materials. The control of flow rate during fiber preparation is directly related to the shell thickness of core–sheath fibers, and the shell thickness directly affects the controlled release of drugs. The fiber preparation strategy for the precise control of core–sheath structure in this work has remarkable potential for modifying water-insoluble drug release and improving its antibacterial performance.
Collapse
|
20
|
Liu X, Zhang M, Song W, Zhang Y, Yu DG, Liu Y. Electrospun Core (HPMC-Acetaminophen)-Shell (PVP-Sucralose) Nanohybrids for Rapid Drug Delivery. Gels 2022; 8:357. [PMID: 35735701 PMCID: PMC9223299 DOI: 10.3390/gels8060357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The gels of cellulose and its derivatives have a broad and deep application in pharmaceutics; however, limited attention has been paid to the influences of other additives on the gelation processes and their functional performances. In this study, a new type of electrospun core-shell nanohybrid was fabricated using modified, coaxial electrospinning which contained composites of hydroxypropyl methyl cellulose (HPMC) and acetaminophen (AAP) in the core sections and composites of PVP and sucralose in the shell sections. A series of characterizations demonstrated that the core-shell hybrids had linear morphology with clear core-shell nanostructures, and AAP and sucralose distributed in the core and shell section in an amorphous state separately due to favorable secondary interactions such as hydrogen bonding. Compared with the electrospun HPMC-AAP nanocomposites from single-fluid electrospinning of the core fluid, the core-shell nanohybrids were able to promote the water absorbance and HMPC gelation formation processes, which, in turn, ensured a faster release of AAP for potential orodispersible drug delivery applications. The mechanisms of the drug released from these nanofibers were demonstrated to be a combination of erosion and diffusion mechanisms. The presented protocols pave a way to adjust the properties of electrospun, cellulose-based, fibrous gels for better functional applications.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Mingxin Zhang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China;
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.L.); (M.Z.); (W.S.)
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
21
|
Ji Y, Song W, Xu L, Yu DG, Annie Bligh SW. A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing. Biomolecules 2022; 12:794. [PMID: 35740919 PMCID: PMC9221312 DOI: 10.3390/biom12060794] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The timely and effective control and repair of wound bleeding is a key research issue all over the world. From traditional compression hemostasis to a variety of new hemostatic methods, people have a more comprehensive understanding of the hemostatic mechanism and the structure and function of different types of wound dressings. Electrospun nanofibers stand out with nano size, high specific surface area, higher porosity, and a variety of complex structures. They are high-quality materials that can effectively promote wound hemostasis and wound healing because they can imitate the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not only has high compatibility with the human body but can also be combined with a variety of drugs to further improve the effect of wound hemostatic dressing. This paper summarizes the application of different amino acid electrospun wound dressings, analyzes the characteristics of different materials in preparation and application, and looks forward to the development of directions of poly(amino acid) electrospun dressings in hemostasis.
Collapse
Affiliation(s)
- Yuexin Ji
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Wenliang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Lin Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
22
|
Wang M, Yu DG, Williams GR, Bligh SWA. Co-Loading of Inorganic Nanoparticles and Natural Oil in the Electrospun Janus Nanofibers for a Synergetic Antibacterial Effect. Pharmaceutics 2022; 14:1208. [PMID: 35745781 PMCID: PMC9228218 DOI: 10.3390/pharmaceutics14061208] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Side-by-side electrospinning is a powerful but challenging technology that can be used to prepare Janus nanofibers for various applications. In this work, cellulose acetate (CA) and polycaprolactone (PCL) were used as polymer carriers for silver nanoparticles (Ag NPs) and lavender oil (LO), respectively, processing these into two-compartment Janus fibers. A bespoke spinneret was used to facilitate the process and prevent the separation of the working fluids. The process of side-by-side electrospinning was recorded with a digital camera, and the morphology and internal structure of the products were characterized by electron microscopy. Clear two-compartment fibers are seen. X-ray diffraction patterns demonstrate silver nanoparticles have been successfully loaded on the CA side, and infrared spectroscopy indicates LO is dispersed on the PCL side. Wetting ability and antibacterial properties of the fibers suggested that PCL-LO//CA-Ag NPs formulation had strong antibacterial activity, performing better than fibers containing only one active component. The PCL-LO//CA-Ag NPs had a 20.08 ± 0.63 mm inhibition zone for E. coli and 19.75 ± 0.96 mm for S. aureus. All the fibers had water contact angels all around 120°, and hence, have suitable hydrophobicity to prevent water ingress into a wound site. Overall, the materials prepared in this work have considerable promise for wound healing applications.
Collapse
Affiliation(s)
- Menglong Wang
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China;
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | | | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China;
| |
Collapse
|
23
|
Lv H, Zhang M, Wang P, Xu X, Liu Y, Yu DG. Ingenious Construction of Ni(DMG)2/TiO2-decorated Porous Nanofibers for the Highly Efficient Photodegradation of Pollutants in Water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Liu Y, Chen X, Gao Y, Yu DG, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnology 2022; 20:244. [PMID: 35643572 PMCID: PMC9148457 DOI: 10.1186/s12951-022-01463-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diversified combination of nanostructure and material has received considerable attention from researchers to exploit advanced functional materials. In drug delivery systems, the hydrophilicity and sustained–release drug properties are in opposition. Thus, difficulties remain in the simultaneous improve sustained–release drug properties and increase the hydrophilicity of materials. Methods In this work, we proposed a modified triaxial electrospinning strategy to fabricate functional core–shell fibres, which could elaborate design of shell component for manipulating the sustained-release drug. Cellulose acetate (CA) was designed as the main polymeric matrix, whereas polyethylene glycol (PEG) was added as a hydrophilic material in the middle layer. Cur, as a model drug, was stored in the inner layer. Results Scanning electron microscopy (SEM) results and transmission electron microscopy (TEM) demonstrated that the cylindrical F2–F4 fibres had a clear core–shell structure. The model drug Cur in fibres was verified in an amorphous form during the X-ray diffraction (XRD) patterns, and Fourier transformed infrared spectroscopy (FTIR) results indicated good compatibility with the CA matrix. The water contact angle test showed that functional F2–F4 fibres had a high hydrophilic property in 120 s and the control sample F1 needed over 0.5 h to obtain hydrophilic property. In the initial stage of moisture intrusion into fibres, the quickly dissolved PEG component guided the water molecules and rapidly eroded the internal structure of functional fibres. The good hydrophilicity of F2–F4 fibres brought relatively excellent swelling rate around 4600%. Blank outer layer of functional F2 fibres with 1% PEG created an exciting opportunity for providing a 96 h sustained-release drug profile, while F3 and F4 fibres with over 3% PEG provided a 12 h modified drug release profile to eliminate tailing–off effect. Conclusion Here, the functional F2–F4 fibres had been successfully produced by using the advanced modified triaxial electrospinning nanotechnology with different polymer matrices. The simple strategy in this work has remarkable potential to manipulate hydrophilicity and sustained release of drug carriers, meantime it can also enrich the preparation approaches of functional nanomaterials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01463-0.
Collapse
|
25
|
Liu H, Jiang W, Yang Z, Chen X, Yu DG, Shao J. Hybrid Films Prepared from a Combination of Electrospinning and Casting for Offering a Dual-Phase Drug Release. Polymers (Basel) 2022; 14:2132. [PMID: 35683805 PMCID: PMC9182575 DOI: 10.3390/polym14112132] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
One of the most important trends in developments in electrospinning is to combine itself with traditional materials production and transformation methods to take advantage of the unique properties of nanofibers. In this research, the single-fluid blending electrospinning process was combined with the casting film method to fabricate a medicated double-layer hybrid to provide a dual-phase drug controlled release profile, with ibuprofen (IBU) as a common model of a poorly water-soluble drug and ethyl cellulose (EC) and polyvinylpyrrolidone (PVP) K60 as the polymeric excipients. Electrospun medicated IBU-PVP nanofibers (F7), casting IBU-EC films (F8) and the double-layer hybrid films (DHFs, F9) with one layer of electrospun nanofibers containing IBU and PVP and the other layer of casting films containing IBU, EC and PVP, were prepared successfully. The SEM assessments demonstrated that F7 were in linear morphologies without beads or spindles, F8 were solid films, and F9 were composed of one porous fibrous layer and one solid layer. XRD and FTIR results verified that both EC and PVP were compatible with IBU. In vitro dissolution tests indicated that F7 were able to provide a pulsatile IBU release, F8 offered a typical drug sustained release, whereas F9 were able to exhibit a dual-phase controlled release with 40.3 ± 5.1% in the first phase for a pulsatile manner and the residues were released in an extended manner in the second phase. The DHFs from a combination of electrospinning and the casting method pave a new way for developing novel functional materials.
Collapse
Affiliation(s)
- Haoran Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
| | - Wenlai Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
| | - Zili Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
| | - Xiren Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.L.); (W.J.); (Z.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Jun Shao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;
| |
Collapse
|
26
|
Xu H, Zhang F, Wang M, Lv H, Yu DG, Liu X, Shen H. Electrospun hierarchical structural films for effective wound healing. BIOMATERIALS ADVANCES 2022; 136:212795. [PMID: 35929294 DOI: 10.1016/j.bioadv.2022.212795] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Patients with acute and chronic wounds have been increasing around the world, and the demand for wound treatment and care is also increasing. Therefore, a new nanofiber wound dressing should be prepared to promote the wound healing process. In this study, we report the design and preparation of a hierarchical structural film wound dressing. The top layer is composed of profoundly hydrophobic polycaprolactone (PCL), which is used to resist the adhesion of external microorganisms. The bottom layer is made of hydrophilic gelatin, which provides a moist healing environment for the wound. The middle layer is composed of hydrophilic Janus nanofibers prepared with the latest side-by-side electrospinning technique. Gelatin and PCL are used as polymer matrices loaded with the ciprofloxacin (CIP) drug and zinc oxide nanoparticles (n-ZnO), respectively. Test results show that the dressing has outstanding surface wettability, excellent mechanical properties, and rapid drug release. The presence of biologically active ingredients provides antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Finally, the results of wound healing in mice show accelerated collagen deposition, promotion of angiogenesis, and complete wound healing within 14 days. Overall, this hierarchical structural dressing has a strong potential for accelerating wound healing.
Collapse
Affiliation(s)
- Haixia Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feiyang Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Menglong Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - He Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China.
| | - Xinkuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Orthopaedics, Jinjiang Municipal Hospital, Fujian 362200, China.
| |
Collapse
|
27
|
|
28
|
Guo S, Jiang W, Shen L, Zhang G, Gao Y, Yang Y, Yu DG. Electrospun Hybrid Films for Fast and Convenient Delivery of Active Herb Extracts. MEMBRANES 2022; 12:membranes12040398. [PMID: 35448368 PMCID: PMC9031211 DOI: 10.3390/membranes12040398] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
Herb medicines are popular for safe application due to being a source of natural herbs. However, how to deliver them in an efficacious and convenient manner poses a big challenge to researchers. In this study, a new concept is demonstrated that the electrospun polymer-based hybrid films can be a platform for promoting the delivery of a mixture of active herb extract, i.e., Lianhua Qingwen Keli (LQK), also a commercial traditional Chinese patent medicine. The LQK can be co-dissolved with the filament-forming polymeric polyvinylpyrrolidone K60 and a sweeter sucralose to prepare an electrospinnable solution. A handheld electrospinning apparatus was explored to transfer the solution into solid nanofibers, i.e., the LQK-loaded medicated films. These films were demonstrated to be composed of linear nanofibers. A puncher was utilized to transfer the mat into circular membrane a diameter of 15 mm. Two self-created methods were developed for disclosing the dissolution performances of the electrospun mats. Both the water droplet experiments and the wet paper (mimic tongue) experiments verified that the hybrid films can rapidly disintegrate when they encounter water and release the loaded LQK in an immediate manner. Based on the reasonable selections of polymeric excipients, the present protocols pave a way for delivering many types of active herb extracts in an effective and convenient manner.
Collapse
Affiliation(s)
- Shiri Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Wenlai Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Liangfei Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Gaoyi Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yiman Gao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Correspondence: (Y.Y.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (Y.Y.); (D.-G.Y.)
| |
Collapse
|
29
|
Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128163] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, Arciola CR. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics (Basel) 2022; 11:antibiotics11030322. [PMID: 35326785 PMCID: PMC8944843 DOI: 10.3390/antibiotics11030322] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Curcumin is a bioactive compound that is extracted from Curcuma longa and that is known for its antimicrobial properties. Curcuminoids are the main constituents of curcumin that exhibit antioxidant properties. It has a broad spectrum of antibacterial actions against a wide range of bacteria, even those resistant to antibiotics. Curcumin has been shown to be effective against the microorganisms that are responsible for surgical infections and implant-related bone infections, primarily Staphylococcus aureus and Escherichia coli. The efficacy of curcumin against Helicobacter pylori and Mycobacterium tuberculosis, alone or in combination with other classic antibiotics, is one of its most promising antibacterial effects. Curcumin is known to have antifungal action against numerous fungi that are responsible for a variety of infections, including dermatophytosis. Candidemia and candidiasis caused by Candida species have also been reported to be treated using curcumin. Life-threatening diseases and infections caused by viruses can be counteracted by curcumin, recognizing its antiviral potential. In combination therapy with other phytochemicals, curcumin shows synergistic effects, and this approach appears to be suitable for the eradication of antibiotic-resistant microbes and promising for achieving co-loaded antimicrobial pro-regenerative coatings for orthopedic implant biomaterials. Poor water solubility, low bioavailability, and rapid degradation are the main disadvantages of curcumin. The use of nanotechnologies for the delivery of curcumin could increase the prospects for its clinical application, mainly in orthopedics and other surgical scenarios. Curcumin-loaded nanoparticles revealed antimicrobial properties against S. aureus in periprosthetic joint infections.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (M.D.); (H.K.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: (M.D.); (H.K.)
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
31
|
Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug. Polymers (Basel) 2022; 14:polym14030469. [PMID: 35160459 PMCID: PMC8839822 DOI: 10.3390/polym14030469] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
In a drug delivery system, the physicochemical properties of the polymeric matrix have a positive impact on the bioavailability of poorly water-soluble drugs. In this work, monolithic F1 fibers and coaxial F2 fibers were successfully prepared using polyvinylpyrrolidone as the main polymer matrix for drug loading and the poorly water-soluble curcumin (Cur) as a model drug. The hydrophobic poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) was designed as a blank layer to change the hydrophilicity of the fiber and restrain the drug dissolution rate. The curved linear morphology without beads of F1 fibers and the straight linear morphology with few spindles of F2 fibers were characterized using field-emission environmental scanning electron microscopy. The amorphous forms of the drug and its good compatibility with polymeric matrix were verified by X-ray diffraction and attenuated total reflectance Fourier transformed infrared spectroscopy. Surface wettability and drug dissolution data showed that the weaker hydrophilicity F2 fibers (31.42° ± 3.07°) had 24 h for Cur dissolution, which was much longer than the better hydrophilic F1 fibers (15.31° ± 2.79°) that dissolved the drug in 4 h.
Collapse
|
32
|
Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu D. Polymer-Based Nanofiber-Nanoparticle Hybrids and Their Medical Applications. Polymers (Basel) 2022; 14:351. [PMID: 35054758 PMCID: PMC8780324 DOI: 10.3390/polym14020351] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The search for higher-quality nanomaterials for medicinal applications continues. There are similarities between electrospun fibers and natural tissues. This property has enabled electrospun fibers to make significant progress in medical applications. However, electrospun fibers are limited to tissue scaffolding applications. When nanoparticles and nanofibers are combined, the composite material can perform more functions, such as photothermal, magnetic response, biosensing, antibacterial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are two primary ways. The electrospinning technology was used to produce NNHs in a single step. An alternate way is to use a self-assembly technique to create nanoparticles in fibers. This paper describes the creation of NNHs from routinely used biocompatible polymer composites. Single-step procedures and self-assembly methodologies are used to discuss the preparation of NNHs. It combines recent research discoveries to focus on the application of NNHs in drug release, antibacterial, and tissue engineering in the last two years.
Collapse
Affiliation(s)
- Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yingning Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
33
|
Miranda CS, Silva AFG, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP. Tunable Spun Fiber Constructs in Biomedicine: Influence of Processing Parameters in the Fibers' Architecture. Pharmaceutics 2022; 14:pharmaceutics14010164. [PMID: 35057060 PMCID: PMC8781456 DOI: 10.3390/pharmaceutics14010164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
Electrospinning and wet-spinning have been recognized as two of the most efficient and promising techniques for producing polymeric fibrous constructs for a wide range of applications, including optics, electronics, food industry and biomedical applications. They have gained considerable attention in the past few decades because of their unique features and tunable architectures that can mimic desirable biological features, responding more effectively to local demands. In this review, various fiber architectures and configurations, varying from monolayer and core-shell fibers to tri-axial, porous, multilayer, side-by-side and helical fibers, are discussed, highlighting the influence of processing parameters in the final constructs. Additionally, the envisaged biomedical purposes for the examined fiber architectures, mainly focused on drug delivery and tissue engineering applications, are explored at great length.
Collapse
Affiliation(s)
- Catarina S. Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Francisca G. Silva
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Sílvia M. M. A. Pereira-Lima
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Susana P. G. Costa
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Natália C. Homem
- Digital Transformation CoLab (DTx), Building 1, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Correspondence: ; Tel.: +351-253-510-283; Fax: +351-253-510-293
| |
Collapse
|
34
|
Affiliation(s)
- Deng-Guang Yu
- University of Shanghai for Science and Technology Shanghai, China
| |
Collapse
|
35
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Enhanced water-resistant performance of Cu-BTC through polyvinylpyrrolidone protection and its capture ability evaluation of methylene blue. NEW J CHEM 2022. [DOI: 10.1039/d1nj05561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water instability issues greatly restrict the application of Cu-BTC for cationic dye (e.g. methylene blue (MB)) capture from wastewater.
Collapse
Affiliation(s)
- Yingzhi Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Danping Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiehong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
36
|
Yu DG, Wang M, Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1772. [PMID: 34964277 DOI: 10.1002/wnan.1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Among different kinds of modified release profiles, sustained drug release (SDR) has received the most attention due to its capability to provide a "safe, efficacious, and convenient" drug delivery effect. Electrospun nanofibers have shown their popularity in this interdisciplinary field, as demonstrated by the first reports about SDRs on drug delivery applications of blended nanofibers and core-shell nanofibers. Along with the evolution of electrospinning from a single-fluid blending process to coaxial, tri-axial, side-by-side, and other multi-fluid processes, more multi-chamber nanostructures can be created through a single-step straight forward manner. These multi-chamber nanostructures can act as a powerful platform to support a wide variety of new strategies for the development of novel SDR nanomaterials. Thus, this review describes a combination history of electrospinning and SDR and its further development trend. After a summary of the presently popular multi-chamber core-shell nanostructures, 15 strategies for furnishing SDR profiles are categorized and exemplified. The perspectives of electrospun multi-chamber nanostructures for further promoting SDR are narrated. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
37
|
Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile at Acyclovir for Modifying Drug Release. Polymers (Basel) 2021; 13:polym13244286. [PMID: 34960834 PMCID: PMC8708694 DOI: 10.3390/polym13244286] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/19/2023] Open
Abstract
In traditional pharmaceutics, drug–crystalline nanoparticles and drug–polymer composites are frequently explored for their ability to modify drug release profiles. In this study, a novel sort of hybrid with a coating of acyclovir crystalline nanoparticles on acyclovir-polyacrylonitrile composites was fabricated using modified, coaxial electrospinning processes. The developed acyclovir-polyacrylonitrile at the acyclovir nanohybrids was loaded with various amounts of acyclovir, which could be realized simply by adjusting the sheath fluid flow rates. Compared with the electrospun composite nanofibers from a single-fluid blending process, the nanohybrids showed advantages of modifying the acyclovir release profiles in the following aspects: (1) the initial release amount was more accurately and intentionally controlled; (2) the later sustained release was nearer to a zero-order kinetic process; and (3) the release amounts at different stages could be easily allocated by the sheath fluid flow rate. X-ray diffraction results verified that the acyclovir nanoparticles were in a crystalline state, and Fourier-transform infrared spectra verified that the drug acyclovir and the polymer polyacrylonitrile had a good compatibility. The protocols reported here could pave the way for developing new types of functional nanostructures.
Collapse
|
38
|
Orodispersible Membranes from a Modified Coaxial Electrospinning for Fast Dissolution of Diclofenac Sodium. MEMBRANES 2021; 11:membranes11110802. [PMID: 34832031 PMCID: PMC8622798 DOI: 10.3390/membranes11110802] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023]
Abstract
The dissolution of poorly water-soluble drugs has been a longstanding and important issue in pharmaceutics during the past several decades. Nanotechnologies and their products have been broadly investigated for providing novel strategies for resolving this problem. In the present study, a new orodispersible membrane (OM) comprising electrospun nanofibers is developed for the fast dissolution of diclofenac sodium (DS). A modified coaxial electrospinning was implemented for the preparation of membranes, during which an unspinnable solution of sucralose was explored as the sheath working fluid for smoothing the working processes and also adjusting the taste of membranes. SEM and TEM images demonstrated that the OMs were composed of linear nanofibers with core-sheath inner structures. XRD and ATR-FTIR results suggested that DS presented in the OMs in an amorphous state due to the fine compatibility between DS and PVP. In vitro dissolution measurements and simulated artificial tongue experiments verified that the OMs were able to release the loaded DS in a pulsatile manner. The present protocols pave the way for the fast dissolution and fast action of a series of poorly water-soluble active ingredients that are suitable for oral administration.
Collapse
|
39
|
Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. MEMBRANES 2021; 11:770. [PMID: 34677536 PMCID: PMC8537333 DOI: 10.3390/membranes11100770] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
With the increasing demand for wound care and treatment worldwide, traditional dressings have been unable to meet the needs of the existing market due to their limited antibacterial properties and other defects. Electrospinning technology has attracted more and more researchers' attention as a simple and versatile manufacturing method. The electrospun nanofiber membrane has a unique structure and biological function similar to the extracellular matrix (ECM), and is considered an advanced wound dressing. They have significant potential in encapsulating and delivering active substances that promote wound healing. This article first discusses the common types of wound dressing, and then summarizes the development of electrospun fiber preparation technology. Finally, the polymers and common biologically active substances used in electrospinning wound dressings are summarized, and portable electrospinning equipment is also discussed. Additionally, future research needs are put forward.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Mingxin Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|