1
|
Song L, Jiang S, Yang Q, Huang W, Qiu Y, Chen Z, Sun X, Wang T, Wu S, Chen Y, Zeng H, Wang Z, Kang L. Development of a Novel Peptide-Based PET Tracer [ 68Ga]Ga-DOTA-BP1 for BCMA Detection in Multiple Myeloma. J Med Chem 2024; 67:15118-15130. [PMID: 39167092 DOI: 10.1021/acs.jmedchem.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
B-cell maturation antigen (BCMA) has emerged as a promising tumor marker for the diagnosis and treatment of multiple myeloma. The noninvasive and rapid detection of BCMA expression in vivo provides significant value in screening and evaluating multiple myeloma patients receiving BCMA-targeted therapy. We identified the BCMA-targeting peptide BP1 from a one-bead-one-compound (OBOC) peptide library using a high-throughput microarray strategy. The BCMA-targeting specificity and affinity of BP1 were assessed by surface plasmon resonance imaging (SPRi), flow cytometry, and confocal imaging. BCMA-positive (H929) and BCMA-negative (K562) subcutaneous tumor models were established and labeled with 68Ga for BP1, followed by PET imaging and biodistribution studies. PET imaging demonstrated that 68Ga-labeled BP1 has significant specific uptake in multiple myeloma, enabling rapid identification of BCMA expression and precise delineation of the disease. Thus, BP1 represents an ideal candidate for multiple myeloma imaging.
Collapse
Affiliation(s)
- Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Sujun Jiang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Tianyao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Sitong Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yongshou Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Huajie Zeng
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
2
|
Ma J, Zhang S, Yang N, Shang J, Gao X, Chen J, Wei H, Li Y, Zeng H, Xu H, Wang J, Liang SH, Wang R, Hu K, Wang L. Discovery of a highly specific radiolabeled antibody targeting B-cell maturation antigen: Applications in PET imaging of multiple myeloma. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06907-3. [PMID: 39259226 DOI: 10.1007/s00259-024-06907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells (PC) in the bone marrow (BM). B-cell maturation antigen (BCMA) is predominantly expressed in malignant plasma cells, and associated with the proliferation, survival, and progression of various myeloma cells. Given these important roles, BCMA emerges as an ideal target antigen for MM therapy. However, effective stratification of patients who may benefit from targeted BCMA therapy and real-time monitoring the therapeutic efficacy poses significant clinical challenge. This study aims to develop a BCMA targeted diagnostic modality, and preliminarily explore its potential value in the radio-immunotherapy of MM. EXPERIMENTAL DESIGN Using zirconium-89 (89Zr, t1/2 = 78.4 h) for labeling the BCMA-specific antibody, the BCMA-targeting PET tracer [89Zr]Zr-DFO-BCMAh230430 was prepared. The EC50 values of BCMAh230430 and DFO-BCMAh230430 were determined by ELISA assay. BCMA expression was assessed in four different tumor cell lines (MM.1S, RPMI 8226, BxPC-3, and KYSE520) through Western blot and flow cytometry. In vitro binding affinity was determined by cell uptake studies of [89Zr]Zr-DFO-BCMAh230430 in these tumor cell lines. For in vivo evaluation, PET imaging and ex vivo biodistribution studies were conducted in tumor-bearing mice to evaluate imaging performance and systemic distribution of [89Zr]Zr-DFO-BCMAh230430. Immunochemistry analysis was performed to detect BCMA expression in tumor tissues, confirming the specificity of our probe. Furthermore, we explored the anti-tumor efficacy of Lutetium-177 labeled BCMA antibody, [177Lu]Lu-DTPA-BCMAh230430, in tumor bearing-mice to validate its radioimmunotherapy potential. RESULTS The radiolabeling of [89Zr]Zr-DFO-BCMAh230430 and [177Lu]Lu-DTPA-BCMAh230430 showed satisfactory radiocharacteristics, with a radiochemical purity exceeding 99%. ELISA assay results revealed closely aligned EC50 values for BCMAh230430 and DFO-BCMAh230430, which are 57 pM and 67 pM, respectively. Western blot and flow cytometry analyses confirmed the highest BCMA expression level. Cell uptake data indicated that MM.1S cells had a total cellular uptake (the sum of internalization and surface binding) of 38.3% ± 1.53% for [89Zr]Zr-DFO-BCMAh230430 at 12 h. PET imaging of [89Zr]Zr-DFO-BCMAh230430 displayed radioactive uptake of 7.71 ± 0.67%ID/g in MM.1S tumors and 4.13 ± 1.21%ID/g in KYSE520 tumors at 168 h post-injection (n = 4) (P < 0.05), consistent with ex vivo biodistribution studies. Immunohistochemical analysis of tumor tissues confirmed higher BCMA expression in MM.1S tumors xenograft compared to KYSE520 tumors. Notably, [177Lu]Lu-DTPA-BCMAh230430 showed some anti-tumor efficacy, evidenced by slowed tumor growth. Furthermore, no significant difference in body weight was observed in MM.1S tumor-bearing mice over 14 days of administration with or without [177Lu]Lu-DTPA-BCMAh230430. CONCLUSIONS Our study has successfully validated the essential role of [89Zr]Zr-DFO-BCMAh230430 in non-invasively monitoring BCMA status in MM tumors, showing favorable tumor uptake and specific binding affinity to MM tumors. Furthermore, our research revealed, as a proof-of-concept, the effectiveness of [177Lu]Lu-DTPA-BCMAh230430 in radioimmunotherapy for MM tumors. In conclusion, we present a novel BCMA antibody-based radiotheranostic modality that holds promise for achieving efficient and precise MM diagnostic and therapy.
Collapse
Affiliation(s)
- Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nianhui Yang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research On Chronic Disease, Guangzhou, 510630, China
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Basic and Translational Research On Chronic Disease, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Huang W, Liang C, Zhang Y, Zhang D, An S, Wu Q, Li J, Zhao H, Wang C, Cui J, Bao Z, Huang G, Wei W, Liu J. ImmunoPET imaging of Trop2 expression in solid tumors with nanobody tracers. Eur J Nucl Med Mol Imaging 2024; 51:380-394. [PMID: 37792026 DOI: 10.1007/s00259-023-06454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE The high expression of the transmembrane glycoprotein trophoblast cell-surface antigen 2 (Trop2) was strongly associated with the progression of solid tumors, including pancreatic and gastric cancers. Our study aimed to construct Trop2-specific immuno-positron emission tomography (immunoPET) probes and assess the diagnostic abilities in preclinical pancreatic and gastric cancer models. METHODS The expression of Trop2 in pancreatic cancer was determined by single-cell sequencing and immunohistochemistry on tissue microarray (TMA). Flow cytometry was used to screen the expression of Trop2 in pancreatic cancer cell lines. Two nanobodies (i.e., RTD98 and RTD01) targeting Trop2 were developed and labeled with gallium-68 (68Ga, T1/2 = 1.1 h) to construct immunoPET imaging probes. The agents were researched in cell-derived pancreatic and patient-derived gastric cancer models expressing varying Trop2. RESULTS Single-cell sequencing results showed high expression of Trop2 in pancreatic ductal cells as well as acinar cells and immunohistochemical staining of TMA from pancreatic cancers showed significantly higher expression of Trop2 in cancerous than in paracancerous tissues. ImmunoPET utilizing [68Ga]Ga-NOTA-RTD98 could clearly delineate subcutaneous tumors, both in cell-derived pancreatic cancer models and patient-derived gastric cancer models, superior to imaging using [18F]-FDG or a non-specific probe [68Ga]Ga-NOTA-RTD161. Another probe with improved pharmacokinetics targeting Trop2, [68Ga]Ga-NOTA-RTD01, was further prepared and showed advantageous diagnostic capabilities in preclinical pancreatic cancer models. CONCLUSION In the work, we reported two nanobody tracers targeting human Trop2 which may facilitate better use of Trop2-targeted therapeutics by noninvasively displaying expression dynamics of the target.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jiujie Cui
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
4
|
Zhang Y, Zhang D, An S, Liu Q, Liang C, Li J, Liu P, Wu C, Huang G, Wei W, Liu J. Development and Characterization of Nanobody-Derived CD47 Theranostic Pairs in Solid Tumors. RESEARCH (WASHINGTON, D.C.) 2023; 6:0077. [PMID: 36939440 PMCID: PMC10017100 DOI: 10.34133/research.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Overexpression of CD47 is frequently observed in various types of human malignancies, inhibiting myeloid-mediated elimination of tumor cells and affecting the prognosis of cancer patients. By mapping biomarker expression, immuno-positron emission tomography has been increasingly used for patient screening and response monitoring. By immunization alpacas with recombinant human CD47, we prepared a CD47-targeting nanobody C2 and developed [68Ga]Ga-NOTA-C2, followed by an exploration of the diagnostic value in CD47-expressing tumor models including gastric-cancer patient-derived xenograft models. By fusing C2 to an albumin binding domain (ABD), we synthesized ABDC2, which had increased in vivo half-life and improved targeting properties. We further labeled ABDC2 with 68Ga/89Zr/177Lu to develop radionuclide theranostic pairs and evaluated the pharmacokinetics and theranostic efficacies of the agents in cell- and patient-derived models. Both C2 and ABDC2 specifically reacted with human CD47 with a high K D value of 23.50 and 84.57 pM, respectively. [68Ga]Ga-NOTA-C2 was developed with high radiochemical purity (99 >%, n = 4) and visualized CD47 expression in the tumors. In comparison to the rapid renal clearance and short half-life of [68Ga]Ga-NOTA-C2, both [68Ga]Ga-NOTA-ABDC2 and [89Zr]Zr-DFO-ABDC2 showed prolonged circulation and increased tumor uptake, with the highest uptake of [89Zr]Zr-DFO-ABDC2 occurring at 72 h post-injection. Moreover, [177Lu]Lu-DOTA-ABDC2 radioimmunotherapy suppressed the tumor growth but was associated with toxicity, warranting further optimization of the treatment schedules. Taken together, we reported a series of nanobody-derived CD47-targeted agents, of which [68Ga]Ga-NOTA-C2 and [89Zr]Zr-DFO-ABDC2 are readily translatable. Optimization and translation of CD47-targeted theranostic pair may provide new prospects for CD47-targeted management of solid tumors.
Collapse
Affiliation(s)
- You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center,
Fudan University, Shanghai 200030, China
| | - Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juan Li
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences,
The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute,
Shanghai Jiao Tong University, Shanghai 200030, China
| | - Changfeng Wu
- Department of Biomedical Engineering,
Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
- Address correspondence to: (W.W.); (G.H.); (J.L.)
| |
Collapse
|
5
|
Hambach J, Mann AM, Bannas P, Koch-Nolte F. Targeting multiple myeloma with nanobody-based heavy chain antibodies, bispecific killer cell engagers, chimeric antigen receptors, and nanobody-displaying AAV vectors. Front Immunol 2022; 13:1005800. [PMID: 36405759 PMCID: PMC9668101 DOI: 10.3389/fimmu.2022.1005800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Nanobodies are well suited for constructing biologics due to their high solubility. We generated nanobodies directed against CD38, a tumor marker that is overexpressed by multiple myeloma and other hematological malignancies. We then used these CD38-specific nanobodies to construct heavy chain antibodies, bispecific killer cell engagers (BiKEs), chimeric antigen receptor (CAR)-NK cells, and nanobody-displaying AAV vectors. Here we review the utility of these nanobody-based constructs to specifically and effectively target CD38-expressing myeloma cells. The promising results of our preclinical studies warrant further clinical studies to evaluate the potential of these CD38-specific nanobody-based constructs for treatment of multiple myeloma.
Collapse
Affiliation(s)
- Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Friedrich Koch-Nolte,
| |
Collapse
|
6
|
Caers J, Duray E, Vrancken L, Marcion G, Bocuzzi V, De Veirman K, Krasniqi A, Lejeune M, Withofs N, Devoogdt N, Dumoulin M, Karlström AE, D’Huyvetter M. Radiotheranostic Agents in Hematological Malignancies. Front Immunol 2022; 13:911080. [PMID: 35865548 PMCID: PMC9294596 DOI: 10.3389/fimmu.2022.911080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.
Collapse
Affiliation(s)
- Jo Caers
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
- *Correspondence: Jo Caers,
| | - Elodie Duray
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Louise Vrancken
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Valentina Bocuzzi
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Nick Devoogdt
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias D’Huyvetter
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|