1
|
Yin S, Cai L, Li X, Lin K, Shi X, Zhang H, Wang L, Li J. Small molecules modified mesoporous silica nanoparticles orally deliver indomethacin with synergistic effect. Eur J Pharm Sci 2024; 195:106719. [PMID: 38309442 DOI: 10.1016/j.ejps.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Molecularly functional drug delivery systems possessed huge potentials to realize novel drug administration. To explore small molecules modified drug delivery, a series of small molecules modified mesoporous silica nanoparticles (L-Mal-MSNs, D-Mal-MSNs) were established by grafting small molecules. Poorly water-soluble indomethacin (IMC) was chosen to load into these small molecules modified carriers as well as corresponding control carrier, and further to study characteristics and delivery effects of drug loaded carriers. The results indicated that all these small molecules modified carriers formed hydrogen bonds with drugs and can successfully convert drug crystal phase to amorphous state so as to enhance drug dissolution compared to raw drug. In vivo rat intestinal perfusion demonstrated that IMC loaded L-Mal-MSNs performed the fastest drug absorption while analgesic and anti-inflammatory effects of IMC loaded D-Mal-MSNs turned out to be the best, giving hints that D-malic acid exhibited best synergic functions for IMC. The herein small molecules modified delivery system is an effective solution strategy for the current application of analgesia and anti-inflammatory drugs with outstanding significance.
Collapse
Affiliation(s)
- Shiliang Yin
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Lin Cai
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Xuan Li
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Kai Lin
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hong Zhang
- School of Lifescience and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Lijie Wang
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Jing Li
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
3
|
Priya L, Mehta S, Gevariya D, Sharma R, Panjwani D, Patel S, Ahlawat P, Dharamsi A, Patel A. Quantum Dot-based Bio-conjugates as an Emerging Bioimaging Tool for Cancer Theranostic- A Review. Curr Drug Targets 2024; 25:241-260. [PMID: 38288834 DOI: 10.2174/0113894501283669240123105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 06/05/2024]
Abstract
Cancer is the most widely studied disorder in humans, but proper treatment has not yet been developed for it. Conventional therapies, like chemotherapy, radiation therapy, and surgery, have been employed. Such therapies target not only cancerous cells but also harm normal cells. Conventional therapy does not result in specific targeting and hence leads to severe side effects. The main objective of this study is to explore the QDs. QDs are used as nanocarriers for diagnosis and treatment at the same time. They are based on the principle of theranostic approach. QDs can be conjugated with antibodies via various methods that result in targeted therapy. This results in their dual function as a diagnostic and therapeutic tool. Nanotechnology involving such nanocarriers can increase the specificity and reduce the side effects, leaving the normal cells unaffected. This review pays attention to different methods for synthesising QDs. QDs can be obtained using either organic method and synthetic methods. It was found that QDs synthesised naturally are more feasible than the synthetic process. Top or bottom-up approaches have also emerged for the synthesis of QDs. QDs can be conjugated with an antibody via non-covalent and covalent binding. Covalent binding is much more feasible than any other method. Zero-length coupling plays an important role as EDC (1-Ethyl-3-Ethyl dimethylaminopropyl)carbodiimide is a strong crosslinker and is widely used for conjugating molecules. Antibodies work as surface ligands that lead to antigen- antibody interaction, resulting in site-specific targeting and leaving behind the normal cells unaffected. Cellular uptake of the molecule is done by either passive targeting or active targeting. QDs are tiny nanocrystals that are inorganic in nature and vary in size and range. Based on different sizes, they emit light of specific wavelengths. They have their own luminescent and optical properties that lead to the monitoring, imaging, and transport of the therapeutic moiety to a variety of targets in the body. The surface of the QDs is modified to boost their functioning. They act as a tool for diagnosis, imaging, and delivery of therapeutic moieties. For improved therapeutic effects, nanotechnology leads the cellular uptake of nanoparticles via passive targeting or active targeting. It is a crucial platform that not only leads to imaging and diagnosis but also helps to deliver therapeutic moieties to specific sites. Therefore, this review concludes that there are numerous drawbacks to the current cancer treatment options, which ultimately result in treatment failure. Therefore, nanotechnology that involves such a nanocarrier will serve as a tool for overcoming all limitations of the traditional therapeutic approach. This approach helps in reducing the dose of anticancer agents for effective treatment and hence improving the therapeutic index. QDs can not only diagnose a disease but also deliver drugs to the cancerous site.
Collapse
Affiliation(s)
- Lipika Priya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Smit Mehta
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Darshan Gevariya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Raghav Sharma
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Abhay Dharamsi
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| |
Collapse
|
4
|
Onugwu AL, Ugorji OL, Ufondu CA, Ihim SA, Echezona AC, Nwagwu CS, Onugwu SO, Uzondu SW, Agbo CP, Ogbonna JD, Attama AA. Nanoparticle-based delivery systems as emerging therapy in retinoblastoma: recent advances, challenges and prospects. NANOSCALE ADVANCES 2023; 5:4628-4648. [PMID: 37705787 PMCID: PMC10496918 DOI: 10.1039/d3na00462g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Retinoblastoma is the most common intraocular malignancy in children. The treatment of this rare disease is still challenging in developing countries due to delayed diagnosis. The current therapies comprise mainly surgery, radiotherapy and chemotherapy. The adverse effects of radiation and chemotherapeutic drugs have been reported to contribute to the high mortality rate and affect patients' quality of life. The systemic side effects resulting from the distribution of chemotherapeutic drugs to non-cancerous cells are enormous and have been recognized as one of the reasons why most potent anticancer compounds fail in clinical trials. Nanoparticulate delivery systems have the potential to revolutionize cancer treatment by offering targeted delivery, enhanced penetration and retention effects, increased bioavailability, and an improved toxicity profile. Notwithstanding the plethora of evidence on the beneficial effects of nanoparticles in retinoblastoma, the clinical translation of this carrier is yet to be given the needed attention. This paper reviews the current and emerging treatment options for retinoblastoma, with emphasis on recent investigations on the use of various classes of nanoparticles in diagnosing and treating retinoblastoma. It also presents the use of ligand-conjugated and smart nanoparticles in the active targeting of anticancer and imaging agents to the tumour cells. In addition, this review discusses the prospects and challenges in translating this nanocarrier into clinical use for retinoblastoma therapy. This review may provide new insight for formulation scientists to explore in order to facilitate the development of more effective and safer medicines for children suffering from retinoblastoma.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Onyinyechi Lydia Ugorji
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka Enugu State Nigeria
| | - Chinasa A Ufondu
- Molecular Pharmacology and Therapeutics, Department of Pharmacology, University of Minnesota Twin Cities USA
| | - Stella Amarachi Ihim
- Department of Science Laboratory Technology (Physiology and Pharmacology Unit), University of Nigeria Nsukka Enugu State Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Sabastine Obinna Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology Enugu State Nigeria
| | - Samuel WisdomofGod Uzondu
- NanoMalaria Research Unit, Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - John Dike Ogbonna
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka Enugu State Nigeria
| |
Collapse
|
5
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
7
|
Jiang P, Liang B, Zhang Z, Fan B, Zeng L, Zhou Z, Mao Z, Xu Q, Yao W, Shen Q. New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment. RSC Adv 2023; 13:19540-19564. [PMID: 37388143 PMCID: PMC10300523 DOI: 10.1039/d3ra03099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Lung cancer is caused by a malignant tumor that shows the fastest growth in both incidence and mortality and is also the greatest threat to human health and life. At present, both in terms of incidence and mortality, lung cancer is the first in male malignant tumors, and the second in female malignant tumors. In the past two decades, research and development of antitumor drugs worldwide have been booming, and a large number of innovative drugs have entered clinical trials and practice. In the era of precision medicine, the concept and strategy of cancer from diagnosis to treatment are experiencing unprecedented changes. The ability of tumor diagnosis and treatment has rapidly improved, the discovery rate and cure rate of early tumors have greatly improved, and the overall survival of patients has benefited significantly, with a tendency to transform to a chronic disease with tumor. The emergence of nanotechnology brings new horizons for tumor diagnosis and treatment. Nanomaterials with good biocompatibility have played an important role in tumor imaging, diagnosis, drug delivery, controlled drug release, etc. This article mainly reviews the advancements in lipid-based nanosystems, polymer-based nanosystems, and inorganic nanosystems in the diagnosis and treatment of non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Piao Jiang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- The First Clinical Medical College, Nanchang University Nanchang China
| | - Bin Liang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| |
Collapse
|
8
|
Jackson N, Ortiz AC, Jerez A, Morales J, Arriagada F. Kinetics and Mechanism of Camptothecin Release from Transferrin-Gated Mesoporous Silica Nanoparticles through a pH-Responsive Surface Linker. Pharmaceutics 2023; 15:1590. [PMID: 37376039 DOI: 10.3390/pharmaceutics15061590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Stimuli-responsive nanomaterials have emerged as a promising strategy for inclusion in anticancer therapy. In particular, pH-responsive silica nanocarriers have been studied to provide controlled drug delivery in acidic tumor microenvironments. However, the intracellular microenvironment that the nanosystem must face has an impact on the anticancer effect; therefore, the design of the nanocarrier and the mechanisms that govern drug release play a crucial role in optimizing efficacy. Here, we synthesized and characterized mesoporous silica nanoparticles with transferrin conjugated on their surface via a pH-sensitive imine bond (MSN-Tf) to assess camptothecin (CPT) loading and release. The results showed that CPT-loaded MSN-Tf (MSN-Tf@CPT) had a size of ca. 90 nm, a zeta potential of -18.9 mV, and a loaded content of 13.4%. The release kinetic data best fit a first-order model, and the predominant mechanism was Fickian diffusion. Additionally, a three-parameter model demonstrated the drug-matrix interaction and impact of transferrin in controlling the release of CPT from the nanocarrier. Taken together, these results provide new insights into the behavior of a hydrophobic drug released from a pH-sensitive nanosystem.
Collapse
Affiliation(s)
- Nicolás Jackson
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Andrea C Ortiz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | - Alejandro Jerez
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Javier Morales
- Department of Pharmaceutical Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380494, Chile
| | - Francisco Arriagada
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
9
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|