1
|
Gharai PK, Khan J, Mallesh R, Garg S, Saha A, Ghosh S, Ghosh S. Vanillin Benzothiazole Derivative Reduces Cellular Reactive Oxygen Species and Detects Amyloid Fibrillar Aggregates in Alzheimer's Disease Brain. ACS Chem Neurosci 2023; 14:773-786. [PMID: 36728363 DOI: 10.1021/acschemneuro.2c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The misfolding of amyloid beta (Aβ) peptides into Aβ fibrillary aggregates is a major hallmark of Alzheimer's disease (AD), which responsible for the excess production of hydrogen peroxide (H2O2), a prominent reactive oxygen species (ROS) from the molecular oxygen (O2) by the reduction of the Aβ-Cu(I) complex. The excessive production of H2O2 causes oxidative stress and inflammation in the AD brain. Here, we have designed and developed a dual functionalized molecule VBD by using π-conjugation (C═C) in the backbone structure. In the presence of H2O2, the VBD can turn into fluorescent probe VBD-1 by cleaving of the selective boronate ester group. The fluorescent probe VBD-1 can undergo intramolecular charge transfer transition (ICT) by a π-conjugative system, and as a result, its emission increases from the yellow (532 nm) to red (590 nm) region. The fluorescence intensity of VBD-1 increases by 3.5-fold upon binding with Aβ fibrillary aggregates with a high affinity (Kd = 143 ± 12 nM). Finally, the VBD reduces the cellular toxic H2O2 as proven by the CCA assay and DCFDA assay and the binding affinity of VBD-1 was confirmed by using in vitro histological staining in 8- and 18-month-old triple transgenic AD (3xTg-AD) mice brain slices.
Collapse
Affiliation(s)
- Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Abhijit Saha
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Subhajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
2
|
Takalloobanafshi G, Kukreja A, Hicks JW. Historical efforts to develop 99mTc-based amyloid plaque targeting radiotracers. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:963698. [PMID: 39390996 PMCID: PMC11466234 DOI: 10.3389/fnume.2022.963698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 10/12/2024]
Abstract
Imaging biomarkers have changed the way we study Alzheimer's disease and related dementias, develop new therapeutics to treat the disease, and stratify patient populations in clinical trials. With respect to protein aggregates comprised of amyloid-β plaques and tau neurofibrillary tangles, Positron Emission Tomography (PET) has become the gold standard imaging modality for quantitative visualization. Due to high infrastructural costs, the availability of PET remains limited to large urban areas within high income nations. This limits access to leading edge medical imaging, and potentially access to new treatments, by millions of rural and remote residents in those regions as well as billions of people in middle- and low-income countries. Single Photon Emission Computed Tomography (SPECT) is a more widely available imaging alternative with lower infrastructural costs and decades of familiarity amongst nuclear medicine professionals. Recent technological advances have closed the gap in spatial resolution and quantitation between SPECT and PET. If effective SPECT radiotracers were available to visualize amyloid-β plaques, geographic barriers to imaging could be circumvented. In this review, we will discuss past efforts to develop SPECT radiotracers targeting amyloid-β plaques which incorporate the most used radionuclide in nuclear medicine: technetium-99m (99mTc; t 1/2 = 6.01 h; γ = 140 keV). While reviewing the various chemical scaffolds and chelates employed, the focus will be upon the impact to the pharmacological properties of putative 99mTc-based amyloid-targeting radiotracers.
Collapse
Affiliation(s)
- Ghazaleh Takalloobanafshi
- Department of Chemistry, Western University, London, ON, Canada
- Cyclotron and Radiochemistry Facility, Lawson Health Research Institute, London, ON, Canada
| | - Aditi Kukreja
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Justin W. Hicks
- Cyclotron and Radiochemistry Facility, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Saint Joseph's Health Care London, London, ON, Canada
| |
Collapse
|
3
|
Krasnovskaya O, Spector D, Zlobin A, Pavlov K, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Metals in Imaging of Alzheimer's Disease. Int J Mol Sci 2020; 21:E9190. [PMID: 33276505 PMCID: PMC7730413 DOI: 10.3390/ijms21239190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid plaques in the brain parenchyma, which occurs 7-15 years before the onset of cognitive symptoms of the pathology. Timely diagnostics of amyloid formations allows identifying AD at an early stage and initiating inhibitor therapy, delaying the progression of the disease. However, clinically used radiopharmaceuticals based on 11C and 18F are synchrotron-dependent and short-lived. The design of new metal-containing radiopharmaceuticals for AD visualization is of interest. The development of coordination compounds capable of effectively crossing the blood-brain barrier (BBB) requires careful selection of a ligand moiety, a metal chelating scaffold, and a metal cation, defining the method of supposed Aβ visualization. In this review, we have summarized metal-containing drugs for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease. The obtained data allow assessing the structure-ability to cross the BBB ratio.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Alexander Zlobin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
| | - Kirill Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia; (A.Z.); (K.P.); (P.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad’ 9, 125047 Moscow, Russia
| |
Collapse
|
4
|
Jokar S, Behnammanesh H, Erfani M, Sharifzadeh M, Gholami M, Sabzevari O, Amini M, Geramifar P, Hajiramezanali M, Beiki D. Synthesis, biological evaluation and preclinical study of a novel 99mTc-peptide: A targeting probe of amyloid-β plaques as a possible diagnostic agent for Alzheimer's disease. Bioorg Chem 2020; 99:103857. [PMID: 32330736 DOI: 10.1016/j.bioorg.2020.103857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
With respect to the main role of amyloid-β (Aβ) plaques as one of the pathological hallmarks in the brain of Alzheimer's patients, the development of new imaging probes for targeted detection of Aβ plaques has attracted considerable interests. In this study, a novel cyclopentadienyl tricarbonyl Technetium-99 m (99mTc) agent with peptide scaffold, 99mTc-Cp-GABA-D-(FPLIAIMA)-NH2, for binding to the Aβ plaques was designed and successfully synthesized using the Fmoc solid-phase peptide synthesis method. This radiopeptide revealed a good affinity for Aβ42 aggregations (Kd = 20 µM) in binding affinity study and this result was confirmed by binding to Aβ plaques in brain sections of human Alzheimer's disease (AD) and rat models using in vitro autoradiography, fluorescent staining, and planar scintigraphy. Biodistribution studies of radiopeptide in AD and normal rats demonstrated a moderate initial brain uptake about 0.38 and 0.35% (ID/g) 2 min post-injection, respectively. Whereas, AD rats showed a notable retention time in the brain (0.23% ID/g at 30 min) in comparison with fast clearance in normal rat brains. Normal rats following treatment with cyclosporine A as a p-glycoprotein inhibitor showed a significant increase in the radiopeptide brain accumulation compared to non-treated ones. There was a good correlation between data gathered from single-photon emission computed tomography/computed tomography (SPECT/CT) imaging and biodistribution studies. Therefore, these findings showed that this novel radiopeptide could be a potential SPECT imaging agent for early detection of Aβ plaques in the brain of patients with AD.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Hajiramezanali
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen Y, Yao Y, Zhou X, Liao C, Dai X, Liu J, Yu Y, Zhang S. Cascade-Reaction-Based Nanodrug for Combined Chemo/Starvation/Chemodynamic Therapy against Multidrug-Resistant Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46112-46123. [PMID: 31722522 DOI: 10.1021/acsami.9b15848] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a chemo/starvation/chemodynamic trimodal combination therapy to combat multidrug-resistant (MDR) tumors by developing a ferrocene-containing nanovesicle (FcNV), which encapsulates glucose oxidase (GOx) in the hydrophilic core and coordinates cisplatin (Pt) in the hydrophobic layer (GOx&Pt@FcNV). Contrasting with other reported multimodal combination therapies, the new nanodrug (GOx&Pt@FcNV) relies on cascade reactions to drastically increase the overall effectiveness against MDR tumors. Specifically, Pt blocks deoxyribonucleic acid replication and activates hydrogen peroxide (H2O2) generation for chemotherapy; GOx consumes glucose to produce H2O2 and gluconic acid for starvation therapy; and all H2O2 products are catalyzed by ferrous ions decomposed from ferrocene to generate the highly toxic hydroxyl radicals (•OH) for chemodynamic therapy. The in vitro studies reveal that GOx&Pt@FcNV exhibits a highly efficient killing effect against various MDR tumor cells. The in vivo studies of double-tumor-bearing nude mice demonstrate that the tumor inhibitory rates (TIRs) of GOx&Pt@FcNV against cisplatin-resistant A549/DDP are 8.1 times and 3.3 times higher than those of Pt and Pt@FcNV, respectively; they are also 8.6 times and 4.3 times higher than Pt and Pt@FcNV against adriamycin-resistant MCF-7/ADR, respectively. This nanodrug with endogenous stimuli-activated cascade reactions offers a reference for the design of effective trimodal combination therapies to combat MDR tumors.
Collapse
Affiliation(s)
| | | | | | | | - Xin Dai
- Zunyi Medical and Pharmaceutical College , Pingan Road , Xinpu District, Zunyi 56300 , China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital Sichuan University , Chengdu 610041 , China
| | | | | |
Collapse
|
6
|
Molavipordanjani S, Emami S, Hosseinimehr SJ. 99mTc-labeled Small Molecules for Diagnosis of Alzheimer’s Disease: Past, Recent and Future Perspectives. Curr Med Chem 2019; 26:2166-2189. [DOI: 10.2174/0929867325666180410104023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/21/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
Background:
Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disease.
Its prominent hallmarks are extracellular deposition of β-amyloids (amyloid plaques), intracellular
neurofibrillary tangles (NTFs), neurodegeneration and finally loss of cognitive function. Hence, AD diagnosis
in the early stage and monitoring of the disease are of great importance.
Methods:
In this review article, we have reviewed recent efforts for design, synthesis and evaluation of
99mTc labeled small molecule for AD imaging purposes.
Results:
These small molecules include derivatives of Congo red, benzothiazole, benzofuran, benzoxazole,
naphthalene, biphenyl, chalcone, flavone, aurone, stilbene, curcumin, dibenzylideneacetone,
quinoxaline, etc. The different aspects of 99mTc-labeled small molecules including chemical structure,
their affinity toward amyloid plaques, BBB permeation and in vivo/vitro stability will be discussed.
Conclusion:
The findings of this review confirm the importance of 99mTc-labeled small molecules for AD
imaging. Future studies based on the pharmacophore of these designed compounds are needed for improvement
of these molecules for clinical application.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019; 62:8881-8914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the complexity of multifactorial diseases, single-target drugs do not always exhibit satisfactory efficacy. Recently, increasing evidence indicates that simultaneous modulation of multiple targets may improve both therapeutic safety and efficacy, compared with single-target drugs. However, few multitarget drugs are on market or in clinical trials, despite the best efforts of medicinal chemists. This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs). Moreover, we analyze some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim to reveal the trends and insights of the potential use of MTDLs.
Collapse
Affiliation(s)
- Junting Zhou
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Xueyang Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Hongli Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China.,Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , People's Republic of China
| | - Wenyuan Liu
- Department of Analytical Chemistry , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| |
Collapse
|
8
|
Sagnou M, Mavroidi B, Shegani A, Paravatou-Petsotas M, Raptopoulou C, Psycharis V, Pirmettis I, Papadopoulos MS, Pelecanou M. Remarkable Brain Penetration of Cyclopentadienyl M(CO)3+ (M = 99mTc, Re) Derivatives of Benzothiazole and Benzimidazole Paves the Way for Their Application as Diagnostic, with Single-Photon-Emission Computed Tomography (SPECT), and Therapeutic Agents for Alzheimer’s Disease. J Med Chem 2019; 62:2638-2650. [DOI: 10.1021/acs.jmedchem.8b01949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Song J, Peng X, Li L, Yang F, Zhang X, Zhang J, Dai J, Cui M. Al 18F-NODA Benzothiazole Derivatives as Imaging Agents for Cerebrovascular Amyloid in Cerebral Amyloid Angiopathy. ACS OMEGA 2018; 3:13089-13096. [PMID: 30411027 PMCID: PMC6217595 DOI: 10.1021/acsomega.8b01120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
In this study, we synthesized four novel Al18/19F-labeled 2-phenylbenzothiazole derivatives conjugated to 1,4,7-triazacyclononane-1,4-diacetic acid via alkyl linkers and evaluated them as imaging agent targets to amyloid-β (Aβ) plaques deposited in the blood vessels of cerebral amyloid angiopathy (CAA) brain. The four ligands exhibited moderate-to-high binding ability to Aβ1-42 aggregates, of which complex 17 possessing the most potent affinity (K i = 11.3 nM) was selected for further biological evaluations. In vitro fluorescent staining and in vitro autoradiography studies on brain sections from CAA patients proved that this ligand could label Aβ deposits in blood vessels selectively. In biodistribution study, [18F]17 can hardly penetrate the blood-brain barrier (brain2 min = 0.3% ID/g) and displayed a rapid blood washout rate (blood2 min/blood60 min = 25.2), which is favorable as CAA imaging agents. In conclusion, this Al18F-labeled 2-phenylbenzothiazole complex was developed and proved to be a promising CAA positron emission tomography agent.
Collapse
Affiliation(s)
- Jia Song
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaohui Peng
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Linlin Li
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Fan Yang
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaojun Zhang
- Department
of Nuclear Medicine, Chinese PLA General
Hospital, Beijing 100853, P. R. China
| | - Jinming Zhang
- Department
of Nuclear Medicine, Chinese PLA General
Hospital, Beijing 100853, P. R. China
| | - Jiapei Dai
- Wuhan
Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Mengchao Cui
- Department
of Nuclear Medicine, Chinese PLA General
Hospital, Beijing 100853, P. R. China
| |
Collapse
|
10
|
Rhenium and technetium complexes of thioamide derivatives of pyridylhydrazine that bind to amyloid-β plaques. J Biol Inorg Chem 2018; 23:1139-1151. [PMID: 29982869 DOI: 10.1007/s00775-018-1590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/22/2018] [Indexed: 01/05/2023]
Abstract
Age-associated deposition of amyloid-β in cerebral blood vessels, a condition referred to as cerebral amyloid angiopathy, can contribute to stroke and dementia. This research aimed to design new radioactive technetium-99 m complexes that bind to amyloid-β plaques that have the potential to assist in diagnosis of cerebral amyloid angiopathy using single-photon-emitted computed tomography (SPECT) imaging. Six new pyridylthiosemicarbazide ligands containing either benzofuran or styrylpyridyl functional groups that are known to selectively bind to amyloid plaques were prepared. Non-radioactive isotopes of technetium are not available so rhenium was used as a surrogate for exploratory chemistry. The new ligands were used to prepare well-defined [Re-oxo]3+ complexes where two pyridylthiosemicarbazide ligands were coordinated to a single metal ion to give bivalent complexes with two amyloid-β targeting functional groups. The interaction of the [Re-oxo]3+ complexes with synthetic amyloid-β1-42 and with amyloid plaques in human brain tissue was investigated. Two ligands were selected to develop methods to prepare their [99mTc-oxo]3+ complexes at the tracer level. These technetium-99 m complexes are likely to be isostructural to their rhenium-oxo analogues.
Collapse
|
11
|
Weber SA, Patel RK, Lutsep HL. Cerebral amyloid angiopathy: diagnosis and potential therapies. Expert Rev Neurother 2018; 18:503-513. [DOI: 10.1080/14737175.2018.1480938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stewart A. Weber
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ranish K. Patel
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Helmi L. Lutsep
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
12
|
Charidimou A, Farid K, Tsai HH, Tsai LK, Yen RF, Baron JC. Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance. J Neurol Neurosurg Psychiatry 2018; 89:410-417. [PMID: 29070646 DOI: 10.1136/jnnp-2017-316851] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/04/2022]
Abstract
INTRODUCTION We performed a meta-analysis to synthesise current evidence on amyloid-positron emission tomography (PET) burden and presumed preferential occipital distribution in sporadic cerebral amyloid angiopathy (CAA). METHODS In a PubMed systematic search, we identified case-control studies with extractable data on global and occipital-to-global amyloid-PET uptake in symptomatic patients with CAA (per Boston criteria) versus control groups (healthy participants or patients with non-CAA deep intracerebral haemorrhage) and patients with Alzheimer's disease. To circumvent PET studies' methodological variation, we generated and used 'fold change', that is, ratio of mean amyloid uptake (global and occipital-to-global) of CAA relative to comparison groups. Amyloid-PET uptake biomarker performance was then quantified by random-effects meta-analysis on the ratios of the means. A ratio >1 indicates that amyloid-PET uptake (global or occipital/global) is higher in CAA than comparison groups, and a ratio <1 indicates the reverse. RESULTS Seven studies, including 106 patients with CAA (>90% with probable CAA) and 138 controls (96 healthy elderly, 42 deep intracerebral haemorrhage controls) and 72 patients with Alzheimer's disease, were included. Global amyloid-PET ratio between patients with CAA and controls was above 1, with an average effect size of 1.18 (95% CI 1.08 to 1.28; p<0.0001). Occipital-to-global amyloid-PET uptake ratio did not differ between patients with CAA versus patients with deep intracerebral haemorrhage or healthy controls. By contrast, occipital-to-global amyloid-PET uptake ratio was above 1 in patients with CAA versus those with Alzheimer's disease, with an average ratio of 1.10 (95% CI 1.03 to 1.19; p=0.009) and high statistical heterogeneity. CONCLUSIONS Our analysis provides exploratory actionable data on the overall effect sizes and strength of amyloid-PET burden and distribution in patients with CAA, useful for future larger studies.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Group, Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karim Farid
- Department of Nuclear Medicine, Martinique University Hospital, Fort-de-France, French West Indies
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Rouh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Jean-Claude Baron
- Department of Neurology, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 2017; 140:1829-1850. [PMID: 28334869 DOI: 10.1093/brain/awx047] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
Sporadic cerebral amyloid angiopathy is a common, well-defined small vessel disease and a largely untreatable cause of intracerebral haemorrhage and contributor to age-related cognitive decline. The term 'cerebral amyloid angiopathy' now encompasses not only a specific cerebrovascular pathological finding, but also different clinical syndromes (both acute and progressive), brain parenchymal lesions seen on neuroimaging and a set of diagnostic criteria-the Boston criteria, which have resulted in increasingly detected disease during life. Over the past few years, it has become clear that, at the pathophysiological level, cerebral amyloid angiopathy appears to be in part a protein elimination failure angiopathy and that this dysfunction is a feed-forward process, which potentially leads to worsening vascular amyloid-β accumulation, activation of vascular injury pathways and impaired vascular physiology. From a clinical standpoint, cerebral amyloid angiopathy is characterized by individual focal lesions (microbleeds, cortical superficial siderosis, microinfarcts) and large-scale alterations (white matter hyperintensities, structural connectivity, cortical thickness), both cortical and subcortical. This review provides an interdisciplinary critical outlook on various emerging and changing concepts in the field, illustrating mechanisms associated with amyloid cerebrovascular pathology and neurological dysfunction.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Gregoire Boulouis
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - M Edip Gurol
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| | - Matthew P Frosch
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA.,C.S. Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA.,Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| |
Collapse
|
14
|
Mei WW, Ji SS, Xiao W, Wang XD, Jiang CS, Ma WQ, Zhang HY, Gong JX, Guo YW. Synthesis and biological evaluation of benzothiazol-based 1,3,4-oxadiazole derivatives as amyloid β-targeted compounds against Alzheimer’s disease. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1993-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Chen K, Cui M. Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. MEDCHEMCOMM 2017; 8:1393-1407. [PMID: 30108850 PMCID: PMC6072098 DOI: 10.1039/c7md00064b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/11/2017] [Indexed: 01/28/2023]
Abstract
In this review, we have focused on the recent progress in metal complexes that are able to bind to β-amyloid (Aβ) species. We have discussed various radioactive complexes of 99mTc, 68Ga, 64Cu, 89Zr, and 111In, which were designed as Aβ imaging agents for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, non-radioactive Re and Ru complexes as Aβ sensors using luminescence methods, and Gd3+ complexes as contrast agents for magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Kaihua Chen
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China . ; ; Tel: +86 10 58808891
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China . ; ; Tel: +86 10 58808891
| |
Collapse
|
16
|
Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update. NEUROIMAGE-CLINICAL 2017; 15:247-263. [PMID: 28560150 PMCID: PMC5435601 DOI: 10.1016/j.nicl.2017.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
Abstract
Sporadic cerebral amyloid angiopathy (CAA) is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH), dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal) amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET) amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers) in sporadic CAA. We focus on two key areas: (a) the diagnostic utility of amyloid-PET in CAA and (b) the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth. A total of six small-scale studies have addressed (or reported data useful to address) the diagnostic utility of late-phase amyloid PET imaging in CAA, and one additional study dealt with early PiB images as a proxy of brain perfusion. Across these studies, amyloid PET imaging has definite diagnostic utility (currently tested only in probable CAA): it helps rule out CAA if negative, whether compared to healthy controls or to hypertensive deep ICH controls. If positive, however, differentiation from underlying incipient Alzheimer's disease (AD) can be challenging and so far, no approach (regional values, ratios, visual assessment) seems sufficient and specific enough, although early PiB data seem to hold promise. Based on the available evidence reviewed, we suggest a tentative diagnostic flow algorithm for amyloid-PET use in the clinical setting of suspected CAA, combining early- and late-phase PiB-PET images. We also identified ten mechanistic amyloid-PET studies providing early but promising proof-of-concept data on CAA pathophysiology and its various manifestations including key MRI lesions, cognitive impairment and large scale brain alterations. Key open questions that should be addressed in future studies of amyloid-PET imaging in CAA are identified and highlighted. CAA is a major cause of brain haemorrhage and cognitive impairment in aged subjects. Without brain biopsy, its current diagnosis largely relies on indirect MRI markers. Amyloid PET may provide a non-invasive molecular signature to formally diagnose CAA. Based on our review, amyloid PET has excellent sensitivity but specificity is unclear. Amyloid PET is also useful to investigate mechanisms underlying CAA manifestations.
Collapse
Affiliation(s)
- Karim Farid
- Department of Nuclear Medicine, Martinique University Hospital, Fort-de-France, Martinique
| | - Andreas Charidimou
- Massachusetts General Hospital, Department of Neurology, Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Jean-Claude Baron
- U894, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
17
|
Liu Y, Yang Y, Sun M, Cui M, Fu Y, Lin Y, Li Z, Nie L. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer. Chem Sci 2017; 8:2710-2716. [PMID: 28451353 PMCID: PMC5399633 DOI: 10.1039/c6sc04798j] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/08/2017] [Indexed: 11/21/2022] Open
Abstract
Highly-efficient targeting probes are desirable for disease diagnosis and functional imaging. However, most of the current near-infrared (NIR) probes suffer from low signal conversion, insufficient photostability, poor probe specificity, and limited functions. Herein, an NIR ultrahigh absorbing croconium dye for amyloid (CDA) was designed and synthesized to specifically bind to cerebrovascular amyloid without antibody linkage. This unique CDA is able to strongly bind the hydrophobic channels of amyloid beta (Aβ) fiber with a very strong binding energy of -9.3 kcal mol-1. Our experimental results demonstrate that the amphipathic dye with an intense absorption peak at 800 nm generated a significant local temperature surge under low-power laser irradiation. Compared with representative prominent indocyanine green, Prussian blue, and gold nanorods, this probe can produce the strongest photoacoustic signal based on the same mass concentration. Labeled with radioactive 18F, this multifunctional probe allowed for the ultrasensitive photoacoustic tomography (PAT)/positron emission tomography (PET)/fluorescence imaging of Aβ plaques in the brain cortex. Featured with high spatial resolution and optical specificity, PAT was intrinsically suitable for imaging pathological sites on cortical vessels, whereas PET revealed whole-body anatomy with quantitative biodistribution information. Our study shows that a CDA-based functionalized dye aided with PAT and PET is capable of plaque diagnosis and localization.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| | - Yanping Yang
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Mingjian Sun
- Department of Control Science and Engineering , Harbin Institute of Technology , 92 West Dazhi Street, Nan Gang District , Harbin 150001 , China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ying Fu
- Department of Control Science and Engineering , Harbin Institute of Technology , 92 West Dazhi Street, Nan Gang District , Harbin 150001 , China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| |
Collapse
|
18
|
2-Arylbenzothiazoles labeled with [CpRe/ 99m Tc(CO) 3 ] and evaluated as β -amyloid imaging probes. Eur J Med Chem 2016; 124:763-772. [DOI: 10.1016/j.ejmech.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/24/2022]
|
19
|
Iikuni S, Ono M, Watanabe H, Yoshimura M, Ishibashi-Ueda H, Ihara M, Saji H. Novel Bivalent 99mTc-Complex with N-Methyl-Substituted Hydroxamamide as Probe for Imaging of Cerebral Amyloid Angiopathy. PLoS One 2016; 11:e0163969. [PMID: 27689870 PMCID: PMC5045186 DOI: 10.1371/journal.pone.0163969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid aggregates in the walls of the cerebral vasculature. Recently, the development of molecular imaging probes targeting CAA has been attracting much attention. We previously reported the 99mTc-hydroxamamide (99mTc-Ham) complex with a bivalent benzothiazole scaffold as a binding moiety for amyloid aggregates ([99mTc]BT2) and its utility for CAA-specific imaging. However, the simultaneous generation of two radiolabeled complexes derived from the geometric isomers was observed in the 99mTc-labeling reaction. It was recently reported that the complexation reaction of 99Tc with N-methyl-substituted Ham provided a single 99Tc-Ham complex consisting of two N-methylated Ham ligands with marked stability. In this article, we designed and synthesized a novel N-methylated bivalent 99mTc-Ham complex ([99mTc]MBT2) and evaluated its utility for CAA-specific imaging. N-Methyl substitution of [99mTc]BT2 prevented the generation of its isomer in the 99mTc-labeling reaction. Enhanced in vitro stability of [99mTc]MBT2 as compared with [99mTc]BT2 was observed. [99mTc]MBT2 showed very low brain uptake, which is favorable for CAA-specific imaging. An in vitro inhibition assay using β-amyloid aggregates and in vitro autoradiographic examination of brain sections from a Tg2576 mouse and a CAA patient showed a decline in the binding affinity for amyloid aggregates due to N-methylation of the 99mTc-Ham complex. These results suggest that the scaffold of the 99mTc-Ham complex may play important roles in the in vitro stability and the binding affinity for amyloid aggregates.
Collapse
Affiliation(s)
- Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masashi Yoshimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Hayne DJ, White JM, McLean CA, Villemagne VL, Barnham KJ, Donnelly PS. Synthesis of Oxorhenium(V) and Oxotechnetium(V) Complexes That Bind to Amyloid-β Plaques. Inorg Chem 2016; 55:7944-53. [PMID: 27459001 DOI: 10.1021/acs.inorgchem.6b00972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease is characterized by the presence of amyloid plaques in the brain. The primary constituents of the plaques are aggregated forms of the amyloid-β (Aβ) peptide. With the goal of preparing technetium-99(m) complexes that bind to Aβ plaques with the potential to be diagnostic imaging agents for Alzheimer's disease, new tetradentate ligands capable of forming neutral and lipophilic complexes with oxotechentium(V) and oxorhenium(V) were prepared. Nonradioactive isotopes of technetium are not available so rhenium was used as a surrogate for exploratory chemistry. Two planar tetradentate N3O ligands were prepared that form charge-neutral complexes with oxorhenium(v) as well as a ligand featuring a styrylpyridyl functional group designed to bind to Aβ plaques. All three ligands formed complexes with oxorhenium(V), and each complex was characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The oxorhenium(V) complex with a styrylpyridyl functional group binds to Aβ plaques present in post-mortem human brain tissue. The chemistry was extrapolated to technetium-99(m) at the tracer level for two of the ligands. The resulting oxotechnetium(V) complexes were sufficiently lipophilic and charge-neutral to suggest that they have the potential to cross the blood-brain barrier but exhibited modest stability with respect to exchange with histidine. The chemistry presented here identifies a strategy to integrate styrylpyridyl functional groups into tetradentate ligands capable of forming complexes with [M═O](3+) cores (M = Re or Tc).
Collapse
Affiliation(s)
| | | | | | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Centre for PET, Austin Health , 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
21
|
Yoshimura M, Ono M, Watanabe H, Kimura H, Saji H. Development of 99mTc-Labeled Pyridyl Benzofuran Derivatives To Detect Pancreatic Amylin in Islet Amyloid Model Mice. Bioconjug Chem 2016; 27:1532-9. [DOI: 10.1021/acs.bioconjchem.6b00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masashi Yoshimura
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kimura
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideo Saji
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Imaging of Cerebral Amyloid Angiopathy with Bivalent (99m)Tc-Hydroxamamide Complexes. Sci Rep 2016; 6:25990. [PMID: 27181612 PMCID: PMC4867616 DOI: 10.1038/srep25990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 04/26/2016] [Indexed: 11/26/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid aggregates in the walls of cerebral vasculature, is a major factor in intracerebral hemorrhage and vascular cognitive impairment and is also associated closely with Alzheimer’s disease (AD). We previously reported 99mTc-hydroxamamide (99mTc-Ham) complexes with a bivalent amyloid ligand showing high binding affinity for β-amyloid peptide (Aβ(1–42)) aggregates present frequently in the form in AD. In this article, we applied them to CAA-specific imaging probes, and evaluated their utility for CAA-specific imaging. In vitro inhibition assay using Aβ(1–40) aggregates deposited mainly in CAA and a brain uptake study were performed for 99mTc-Ham complexes, and all 99mTc-Ham complexes with an amyloid ligand showed binding affinity for Aβ(1–40) aggregates and very low brain uptake. In vitro autoradiography of human CAA brain sections and ex vivo autoradiography of Tg2576 mice were carried out for bivalent 99mTc-Ham complexes ([99mTc]SB2A and [99mTc]BT2B), and they displayed excellent labeling of Aβ depositions in human CAA brain sections and high affinity and selectivity to CAA in transgenic mice. These results may offer new possibilities for the development of clinically useful CAA-specific imaging probes based on the 99mTc-Ham complex.
Collapse
|
23
|
Zha Z, Song J, Choi SR, Wu Z, Ploessl K, Smith M, Kung H. 68Ga-Bivalent Polypegylated Styrylpyridine Conjugates for Imaging Aβ Plaques in Cerebral Amyloid Angiopathy. Bioconjug Chem 2016; 27:1314-23. [DOI: 10.1021/acs.bioconjchem.6b00127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhihao Zha
- Beijing
Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Song
- Beijing
Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zehui Wu
- Beijing
Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Megan Smith
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Hank Kung
- Beijing
Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Gurol ME. Molecular Neuroimaging in Vascular Cognitive Impairment. Stroke 2016; 47:1146-52. [PMID: 26883497 DOI: 10.1161/strokeaha.115.007958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/28/2016] [Indexed: 12/27/2022]
Affiliation(s)
- M Edip Gurol
- From the Department of Neurology, Massachusetts General Hospital, Boston.
| |
Collapse
|