1
|
Liang L, Takamiya R, Miki Y, Heike K, Taketomi Y, Sugimoto N, Yamaguchi M, Shitara H, Nishito Y, Kobayashi T, Hirabayashi T, Murakami M. Group IVE cytosolic phospholipase A 2 limits psoriatic inflammation by mobilizing the anti-inflammatory lipid N-acylethanolamine. FASEB J 2022; 36:e22301. [PMID: 35478358 DOI: 10.1096/fj.202101958r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Psoriasis is an inflammatory disorder characterized by keratinocyte hyper-proliferation and Th17-type immune responses. However, the roles of bioactive lipids and the regulation of their biosynthesis in this chronic skin disease are not fully understood. Herein, we show that group IVE cytosolic phospholipase A2 (cPLA2 ε/PLA2G4E) plays a counterregulatory role against psoriatic inflammation by producing the anti-inflammatory lipid N-acylethanolamine (NAE). Lipidomics analysis of mouse skin revealed that NAE species and their precursors (N-acyl-phosphatidylethanolamine and glycerophospho-N-acylethanolamine) were robustly increased in parallel with the ongoing process of imiquimod (IMQ)-induced psoriasis, accompanied by a marked upregulation of cPLA2 ε in epidermal keratinocytes. Genetic deletion of cPLA2 ε exacerbated IMQ-induced ear swelling and psoriatic marker expression, with a dramatic reduction of NAE-related lipids in IMQ-treated, and even normal, skin. Stimulation of cultured human keratinocytes with psoriatic cytokines concomitantly increased PLA2G4E expression and NAE production, and supplementation with NAEs significantly attenuated the cytokine-induced upregulation of the psoriatic marker S100A9. Increased expression of cPLA2 ε was also evident in the epidermis of psoriatic patients. These findings reveal for the first time the in vivo role of cPLA2 ε, which is highly induced in the keratinocytes of the psoriatic skin, promotes the biosynthesis of NAE-related lipids, and contributes to limiting psoriatic inflammation.
Collapse
Affiliation(s)
- Luyiyun Liang
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rina Takamiya
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanako Heike
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Sugimoto
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Midori Yamaguchi
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
2
|
Biernacki M, Brzóska MM, Markowska A, Gałażyn-Sidorczuk M, Cylwik B, Gęgotek A, Skrzydlewska E. Oxidative Stress and Its Consequences in the Blood of Rats Irradiated with UV: Protective Effect of Cannabidiol. Antioxidants (Basel) 2021; 10:antiox10060821. [PMID: 34063802 PMCID: PMC8224002 DOI: 10.3390/antiox10060821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
UVA/UVB radiation disturbs the redox balance of skin cells, and metabolic consequences can be transferred into the blood and internal tissues, especially after chronic skin exposure to UV radiation. Therefore, the aim of this study was to evaluate the effect of cannabidiol (CBD), an antioxidant and anti-inflammatory phytocannabinoid, on oxidative stress and its consequences in the blood of nude rats whose skin was exposed to UVA/UVB radiation for 4 weeks. It was shown that CBD penetrated the blood and in UVB-irradiated rats was preferentially located in the membranes of polymorphonuclear leukocytes, which promoted reduction of ROS generation and up-regulation of antioxidant ability by increasing the activity of glutathione reductase and thioredoxin reductase, while the level of reduced glutathione decreased by UV radiation. Consequently, reduction in UV-induced lipid peroxidation, assessed as 4-hydroxynonenal (4-HNE) and 8-isoprostane (8-isoPGF2α) as well as protein modifications, estimated as 4-HNE-protein adducts and protein carbonyl groups, was observed. CBD, by countering the UV-induced down-regulation of 2-arachidonylglycerol, promoted its antioxidant/anti-inflammatory effects by reducing CB1 and increasing PPARγ receptor activation and consequently ROS and TNF-α down-regulation. The results suggest that CBD applied topically to the skin minimizes redox changes not only at the skin level, but also at the systemic level.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Michalina Brzóska
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Agnieszka Markowska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Gałażyn-Sidorczuk
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Bogdan Cylwik
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, J. Waszyngtona 17, 15-269 Białystok, Poland;
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +48-857-485-708
| |
Collapse
|
3
|
Beggiato S, Tomasini MC, Ferraro L. Palmitoylethanolamide (PEA) as a Potential Therapeutic Agent in Alzheimer's Disease. Front Pharmacol 2019; 10:821. [PMID: 31396087 PMCID: PMC6667638 DOI: 10.3389/fphar.2019.00821] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
N-Palmitoylethanolamide (PEA) is a non-endocannabinoid lipid mediator belonging to the class of the N-acylethanolamine phospolipids and was firstly isolated from soy lecithin, egg yolk, and peanut meal. Either preclinical or clinical studies indicate that PEA is potentially useful in a wide range of therapeutic areas, including eczema, pain, and neurodegeneration. PEA-containing products are already licensed for use in humans as a nutraceutical, a food supplement, or a food for medical purposes, depending on the country. PEA is especially used in humans for its analgesic and anti-inflammatory properties and has demonstrated high safety and tolerability. Several preclinical in vitro and in vivo studies have proven that PEA can induce its biological effects by acting on several molecular targets in both central and peripheral nervous systems. These multiple mechanisms of action clearly differentiate PEA from classic anti-inflammatory drugs and are attributed to the compound that has quite unique anti(neuro)inflammatory properties. According to this view, preclinical studies indicate that PEA, especially in micronized or ultramicronized forms (i.e., formulations that maximize PEA bioavailability and efficacy), could be a potential therapeutic agent for the effective treatment of different pathologies characterized by neurodegeneration, (neuro)inflammation, and pain. In particular, the potential neuroprotective effects of PEA have been demonstrated in several experimental models of Alzheimer's disease. Interestingly, a single-photon emission computed tomography (SPECT) case study reported that a mild cognitive impairment (MCI) patient, treated for 9 months with ultramicronized-PEA/luteolin, presented an improvement of cognitive performances. In the present review, we summarized the current preclinical and clinical evidence of PEA as a possible therapeutic agent in Alzheimer's disease. The possible PEA neuroprotective mechanism(s) of action is also described.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy.,IRET Foundation, Bologna, Italy
| | - Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy.,IRET Foundation, Bologna, Italy
| |
Collapse
|
4
|
Hesselink JMK, Chiosi F, Costagliola C. Resolvins and aliamides: lipid autacoids in ophthalmology - what promise do they hold? DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3133-3141. [PMID: 27729772 PMCID: PMC5045908 DOI: 10.2147/dddt.s112389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resolvins are a novel class of lipid-derived endogenous molecules (autacoids) with potent immunomodulating properties, which regulate the resolution phase of an active immune response. These modulating factors are locally produced, influencing the function of cells and/or tissues, which are produced on demand and subsequently metabolized in the same cells and/or tissues. This review is focused on certain lipid autacoids with putative relevance for ophthalmology in general and for dry eye more specifically. We also briefly investigate the concept of aliamides and the role of palmitoylethanolamide in ophthalmology, and analyze in more detail the putative role and the preclinical and clinical development of resolvins as emerging treatments for dry eye and related disorders, with a focus on one of the lead resolvin derivatives – RX-10045.
Collapse
Affiliation(s)
| | - Flavia Chiosi
- Eye Clinic, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Eye Clinic, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
5
|
Tronino D, Offerta A, Ostacolo C, Russo R, De Caro C, Calignano A, Puglia C, Blasi P. Nanoparticles prolong N-palmitoylethanolamide anti-inflammatory and analgesic effects in vivo. Colloids Surf B Biointerfaces 2016; 141:311-317. [PMID: 26866893 DOI: 10.1016/j.colsurfb.2016.01.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Abstract
N-Palmitoylethanolamide showed great therapeutic potential in the treatment of inflammation and pain but its unfavourable pharmacokinetics properties will hinder its use in the clinical practice. A nanotechnology-based formulation was developed to enhance the probability of N-palmitoylethanolamide therapeutic success, especially in skin disease management. Lipid nanoparticles were produced and characterized to evaluate their mean size, ζ-potential, thermal behaviour, and morphology. The ability of N-palmitoylethanolamide to diffuse across the epidermis as well as anti-inflammatory and analgesic effects were investigated. Particles had a mean size of about 150 nm and a ζ-potential of -40 mV. DSC data confirmed the solid state of the matrix and the embedding of N-palmitoylethanolamide while electron microscopy have evidenced a peculiar internal structure (i.e., low-electrondense spherical objects within the matrix) that can be reliably ascribed to the presence of oil nanocompartments. Lipid nanoparticles increased N-palmitoylethanolamide percutaneous diffusion and prolonged the anti-inflammatory and analgesic effects in vivo. Lipid nanoparticles seem a good nanotechnology-based strategy to bring N-palmitoylethanolamide to clinics.
Collapse
Affiliation(s)
- Diana Tronino
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Alessia Offerta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Carmine Ostacolo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Roberto Russo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmen De Caro
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Antonio Calignano
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmelo Puglia
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Paolo Blasi
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Piazza dei Costanti, 62032 Camerino, Italy.
| |
Collapse
|