1
|
Al-Ibraheem A, Abdlkadir AS, Juweid ME, Al-Rabi K, Ma’koseh M, Abdel-Razeq H, Mansour A. FDG-PET/CT in the Monitoring of Lymphoma Immunotherapy Response: Current Status and Future Prospects. Cancers (Basel) 2023; 15:1063. [PMID: 36831405 PMCID: PMC9954669 DOI: 10.3390/cancers15041063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer immunotherapy has been extensively investigated in lymphoma over the last three decades. This new treatment modality is now established as a way to manage and maintain several stages and subtypes of lymphoma. The establishment of this novel therapy has necessitated the development of new imaging response criteria to evaluate and follow up with cancer patients. Several FDG PET/CT-based response criteria have emerged to address and encompass the various most commonly observed response patterns. Many of the proposed response criteria are currently being used to evaluate and predict responses. The purpose of this review is to address the efficacy and side effects of cancer immunotherapy and to correlate this with the proposed criteria and relevant patterns of FDG PET/CT in lymphoma immunotherapy as applicable. The latest updates and future prospects in lymphoma immunotherapy, as well as PET/CT potentials, will be discussed.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
| | - Malik E. Juweid
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Mohammad Ma’koseh
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan
- Department of Internal Medicine, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
2
|
Postnov A, Toutain J, Pronin I, Valable S, Gourand F, Kalaeva D, Vikhrova N, Pyzhik E, Guillouet S, Kobyakov G, Khokholova E, Pitskhelauri D, Usachev D, Maryashev S, Rizhova M, Potapov A, Derlon JM. First-in-Man Noninvasive Initial Diagnostic Approach of Primary CNS Lymphoma Versus Glioblastoma Using PET With 18 F-Fludarabine and l -[methyl- 11 C]Methionine. Clin Nucl Med 2022; 47:699-706. [PMID: 35485864 DOI: 10.1097/rlu.0000000000004238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study sought to assess 18 F-fludarabine ( 18 F-FLUDA) PET/CT's ability in differentiating primary central nervous system lymphomas (PCNSLs) from glioblastoma multiformes (GBMs). PATIENTS AND METHODS Patients harboring either PCNSL (n = 8) before any treatment, PCNSL treated using corticosteroids (PCNSLh; n = 10), or GBM (n = 13) were investigated with conventional MRI and PET/CT, using 11 C-MET and 18 F-FLUDA. The main parameters measured with each tracer were SUV T and T/N ratios for the first 30 minutes of 11 C-MET acquisition, as well as at 3 different times after 18 F-FLUDA injection. The early 18 F-FLUDA uptake within the first minute of injection was equally considered, whereas this parameter was combined with the later uptakes to obtain R FLUDA 2 and R FLUDA 3 ratios. RESULTS No significant differences in 11 C-MET uptakes were observed among PCNSL, PCNSLh, and GBM. With 18 F-FLUDA, a clear difference in dynamic GBM uptake was observed, which decreased over time after an early maximum, as compared with that of PCNSL, which steadily increased over time, PCNSLh exhibiting intermediate values. The most discriminative parameters consisting of R FLUDA 2 and R FLUDA 3 integrated the early tracer uptake (first 60 seconds), thereby provided 100% specificity and sensitivity. CONCLUSIONS 18 F-FLUDA was shown to likely be a promising radiopharmaceutical for differentiating PCNSL from other malignancies, although a pretreatment with corticosteroids might compromise this differential diagnostic ability. The diagnostic role of 18 F-FLUDA should be further investigating, along with its potential of defining therapeutic strategies in patients with PCNSL, while assessing the treatments' effectiveness.
Collapse
Affiliation(s)
| | | | - Igor Pronin
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | | | - Fabienne Gourand
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP CYCERON, Caen, France
| | | | - Nina Vikhrova
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | - Elena Pyzhik
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | - Stéphane Guillouet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP CYCERON, Caen, France
| | - Grigoriy Kobyakov
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | | | | | - Dmitry Usachev
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | - Sergey Maryashev
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | - Marina Rizhova
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | - Alexander Potapov
- From the N.N. Burdenko National Medical Research Center of Neurosurgery
| | | |
Collapse
|
3
|
Qiao Z, Xu J, Gonzalez R, Miao Y. Novel Al 18F-NOTA-Conjugated Lactam-Cyclized α-Melanocyte-Stimulating Hormone Peptides with Enhanced Melanoma Uptake. Bioconjug Chem 2022; 33:982-990. [PMID: 35475603 PMCID: PMC10188279 DOI: 10.1021/acs.bioconjchem.2c00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to evaluate the effect of linker on tumor targeting and biodistribution of Al18F-NOTA-PEG2Nle-CycMSHhex {Al18F-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-poly(ethylene glycol)-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and Al18F-NOTA-AocNle-CycMSHhex {Al18F-NOTA-8-aminooctanoic acid-Nle-CycMSHhex} on melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were synthesized using fluorenylmethoxycarbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined on B16/F10 melanoma cells. The biodistribution of Al18F-NOTA-PEG2Nle-CycMSHhex and Al18F-NOTA-AocNle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of Al18F-NOTA-PEG2Nle-CycMSHhex was further examined on B16/F10 melanoma-bearing C57 mice because of its higher melanoma uptake and lower renal uptake than that of Al18F-NOTA-AocNle-CycMSHhex. The IC50 values of NOTA-PEG2/AocNle-CycMSHhex were 1.24 ± 0.07 and 2.75 ± 0.48 nM on B10/F10 cells. Al18F-NOTA-PEG2Nle-CycMSHhex and Al18F-NOTA-AocNle-CycMSHhex were readily prepared with more than 55% of radiolabeling yields and displayed melanocortin-1 receptor (MC1R)-specific binding on B16/F10 cells. Al18F-NOTA-PEG2Nle-CycMSHhex exhibited higher tumor uptake and lower kidney and liver uptake than Al18F-NOTA-AocNle-CycMSHhex at 1 and 2 h post injection. The tumor and renal uptakes of Al18F-NOTA-PEG2Nle-CycMSHhex were 17.44 ± 0.76 and 2.07 ± 0.43% ID/g at 1 h post injection, respectively. Al18F-NOTA-PEG2Nle-CycMSHhex showed the high tumor to normal organ uptake ratios after 1 h post injection. The B16/F10 melanoma lesions could be clearly visualized by positron emission tomography (PET) using Al18F-NOTA-PEG2Nle-CycMSHhex as an imaging probe at 1 and 2 h post injection. Overall, high tumor uptake, low kidney and liver uptake, and fast urinary clearance of Al18F-NOTA-PEG2Nle-CycMSHhex highlighted its potential as an MC1R-targeted imaging probe for melanoma detection.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Sugo Y, Ohira SI, Manabe H, Maruyama YH, Yamazaki N, Miyachi R, Toda K, Ishioka NS, Mori M. Highly Efficient Separation of Ultratrace Radioactive Copper Using a Flow Electrolysis Cell. ACS OMEGA 2022; 7:15779-15785. [PMID: 35571765 PMCID: PMC9096931 DOI: 10.1021/acsomega.2c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Preparing compounds containing the radioisotope 64Cu for use in positron emission tomography cancer diagnostics is an ongoing area of research. In this study, a highly efficient separation method to recover 64Cu generated by irradiating the target 64Ni with a proton beam was developed by employing a flow electrolysis cell (FE). This system consists of (1) applying a reduction potential for the selective adsorption of 64Cu from the target solution when dissolved in HCl and (2) recovering the 64Cu deposited onto the carbon working electrode by desorbing it from the FE during elution with 10 mmol/L HNO3, which applies an oxidation potential. The 64Cu was selectively eluted at approximately 30 min under a flow rate of 0.5 mL/min from the injection to recovery. The newly developed flow electrolysis system can separate the femtomolar level of ultratrace radioisotopes from the larger amount of target metals as an alternative to conventional column chromatography.
Collapse
Affiliation(s)
- Yumi Sugo
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Shin-Ichi Ohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Manabe
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Yo-hei Maruyama
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Naoaki Yamazaki
- Graduate
School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ryoma Miyachi
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kei Toda
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Noriko S. Ishioka
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Masanobu Mori
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
5
|
Lu D, Chen M, Yu L, Chen Z, Guo H, Zhang Y, Han Z, Xu T, Wang H, Zhou X, Zhou Z, Teng G. Smart-Polypeptide-Coated Mesoporous Fe 3O 4 Nanoparticles: Non-Interventional Target-Embolization/Thermal Ablation and Multimodal Imaging Combination Theranostics for Solid Tumors. NANO LETTERS 2021; 21:10267-10278. [PMID: 34878286 DOI: 10.1021/acs.nanolett.1c03340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor theranostics hold great potential for personalized medicine in the future, and transcatheter arterial embolization (TAE) is an important clinical treatment for unresectable or hypervascular tumors. In order to break the limitation, simplify the procedure of TAE, and achieve ideal combinatorial theranostic capability, here, a kind of triblock-polypeptide-coated perfluoropentane-loaded mesoporous Fe3O4 nanocomposites (PFP-m-Fe3O4@PGTTCs) were prepared for non-interventional target-embolization, magnetic hyperthermia, and multimodal imaging combination theranostics of solid tumors. The results of systematic animal experiments by H22-tumor-bearing mice and VX2-tumor-bearing rabbits in vivo indicated that PFP-m-Fe3O4@PGTTC-6.3 has specific tumor accumulation and embolization effects. The tumors' growth has been inhibited and the tumors disappeared 4 weeks and ≤15 days post-injection with embolization and magnetic hyperthermia combination therapy, respectively. The results also showed an excellent effect of magnetic resonance/ultrasound/SPECT multimodal imaging. This pH-responsive non-interventional embolization combinatorial theranostics system provides a novel embolization and multifunctional theranostic candidate for solid tumors.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mingshu Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Lili Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zhengpeng Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hongyun Guo
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Yongdong Zhang
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Zhiming Han
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Tingting Xu
- Zhongda Hospital Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haijun Wang
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xing Zhou
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zubang Zhou
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gaojun Teng
- Zhongda Hospital Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
6
|
Al Tabaa Y, Bailly C, Kanoun S. FDG-PET/CT in Lymphoma: Where Do We Go Now? Cancers (Basel) 2021; 13:cancers13205222. [PMID: 34680370 PMCID: PMC8533807 DOI: 10.3390/cancers13205222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) is an essential part of the management of patients with lymphoma at staging and response evaluation. Efforts to standardize PET acquisition and reporting, including the 5-point Deauville scale, have enabled PET to become a surrogate for treatment success or failure in common lymphoma subtypes. This review summarizes the key clinical-trial evidence that supports PET-directed personalized approaches in lymphoma but also points out the potential place of innovative PET/CT metrics or new radiopharmaceuticals in the future.
Collapse
Affiliation(s)
- Yassine Al Tabaa
- Scintidoc Nuclear Medicine Center, 25 rue de Clémentville, 34070 Montpellier, France
- Correspondence:
| | - Clement Bailly
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44093 Nantes, France;
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
| | - Salim Kanoun
- Nuclear Medicine Department, Institute Claudius Regaud, 31100 Toulouse, France;
- Cancer Research Center of Toulouse (CRCT), Team 9, INSERM UMR 1037, 31400 Toulouse, France
| |
Collapse
|
7
|
Anderson S, Grist JT, Lewis A, Tyler DJ. Hyperpolarized 13 C magnetic resonance imaging for noninvasive assessment of tissue inflammation. NMR IN BIOMEDICINE 2021; 34:e4460. [PMID: 33291188 PMCID: PMC7900961 DOI: 10.1002/nbm.4460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Inflammation is a central mechanism underlying numerous diseases and incorporates multiple known and potential future therapeutic targets. However, progress in developing novel immunomodulatory therapies has been slowed by a need for improvement in noninvasive biomarkers to accurately monitor the initiation, development and resolution of immune responses as well as their response to therapies. Hyperpolarized magnetic resonance imaging (MRI) is an emerging molecular imaging technique with the potential to assess immune cell responses by exploiting characteristic metabolic reprogramming in activated immune cells to support their function. Using specific metabolic tracers, hyperpolarized MRI can be used to produce detailed images of tissues producing lactate, a key metabolic signature in activated immune cells. This method has the potential to further our understanding of inflammatory processes across different diseases in human subjects as well as in preclinical models. This review discusses the application of hyperpolarized MRI to the imaging of inflammation, as well as the progress made towards the clinical translation of this emerging technique.
Collapse
Affiliation(s)
- Stephanie Anderson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - James T. Grist
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Radiology, The Churchill HospitalOxford University Hospitals TrustHeadingtonUK
| | - Andrew Lewis
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Barré L, Hovhannisyan N, Bodet-Milin C, Kraeber-Bodéré F, Damaj G. [ 18F]-Fludarabine for Hematological Malignancies. Front Med (Lausanne) 2019; 6:77. [PMID: 31058154 PMCID: PMC6478790 DOI: 10.3389/fmed.2019.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023] Open
Abstract
With the emergence of PET/CT using 18F-FDG, molecular imaging has become the reference for lymphoma lesion detection, tumor staging, and response assessment. According to the response in some lymphoma subtypes it has also been utilized for prognostication of disease. Although 18F-FDG has proved useful in the management of patients with lymphoma, the specificity of 18F-FDG uptake has been critically questioned, and is not without flaws. Its dependence on glucose metabolism, which may indiscriminately increase in benign conditions, can affect the 18F-FDG uptake in tumors and may explain the causes of false-positive imaging data. Considering these drawbacks, 18F-fludarabine, an adenine nucleoside analog, was developed as a novel PET imaging probe. An efficient and fully automated radiosynthesis has been implemented and, subsequently preclinical studies in xenograft murine models of hematological maligancies (follicular lymphoma, CNS lymphoma, multiple myeloma) were conducted with this novel PET probe in parallel with 18F-FDG. The results demonstrated several crucial points: tumor-specific targeting, weaker uptake in inflammatory processes, stronger correlation between quantitative values extracted from [18]F-fludarabine and histology when compared to 18F-FDG-PET, robustness during immunotherapy with rituximab, divergent responses between CNS lymphoma and glioblastoma (GBM). All these favorable findings permitted to establish a “first in man” study where 10 patients were enrolled. In DLBCL patients, increased uptake was observed in sites considered abnormal by CT and [18F]FDG; in two patients discrepancies were observed in comparison with 18F-FDG. In CLL patients, the uptake coincided with sites expected to be involved and displayed a significant uptake in hematopoietic bone marrow. No uptake was observed, whatever the disease group, in the cardiac muscle and brain. Moreover, its mean effective dose was below the effective dose reported for 18F-FDG. These preclinical and clinical findings revealed a marked specificity of 18F-fludarabine for lymphoma tissues. Furthermore, it might well be a robust tool for correctly quantifying the disease, in the presence of confounding inflammatory processes, thus avoiding false-positive results, and an innovative approach for imaging hematological malignancies.
Collapse
Affiliation(s)
- Louisa Barré
- LDM-TEP Group, UMR6030 Imagerie et Stratégies Thérapeutiques des Pathologies Cérébrales et Tumorales, Caen, France
| | - Narinée Hovhannisyan
- LDM-TEP Group, UMR6030 Imagerie et Stratégies Thérapeutiques des Pathologies Cérébrales et Tumorales, Caen, France
| | - Caroline Bodet-Milin
- Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | | - Gandhi Damaj
- Department of Hematology, University Hospital Center of Caen, Caen, France
| |
Collapse
|
9
|
Hovhannisyan N, Fillesoye F, Guillouet S, Ibazizene M, Toutain J, Gourand F, Valable S, Plancoulaine B, Barré L. [ 18F]Fludarabine-PET as a promising tool for differentiating CNS lymphoma and glioblastoma: Comparative analysis with [ 18F]FDG in human xenograft models. Am J Cancer Res 2018; 8:4563-4573. [PMID: 30214639 PMCID: PMC6134939 DOI: 10.7150/thno.26754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
This paper investigated whether positron emission tomography (PET) imaging with [18F]fludarabine ([18F]FDB) can help to differentiate central nervous system lymphoma (CNSL) from glioblastoma (GBM), which is a crucial issue in the diagnosis and management of patients with these aggressive brain tumors. Multimodal analyses with [18F]fluorodeoxyglucose ([18F]FDG), magnetic resonance imaging (MRI) and histology have also been considered to address the specificity of [18F]FDB for CNSL. Methods: Nude rats were implanted with human MC116 lymphoma-cells (n = 9) or U87 glioma-cells (n = 4). Tumor growth was monitored by MRI, with T2-weighted sequence for anatomical features and T1-weighted with gadolinium (Gd) enhancement for blood brain barrier (BBB) permeability assessment. For PET investigation, [18F]FDB or [18F]FDG (~11 MBq) were injected via tail vein and dynamic PET images were acquired up to 90 min after radiotracer injection. Paired scans of the same rat with the two [18F]-labelled radiotracers were investigated. Initial volumes of interest were manually delineated on T2w images and set on co-registered PET images and tumor-to-background ratio (TBR) was calculated to semi-quantitatively assess the tracer accumulation in the tumor. A tile-based method for image analysis was developed in order to make comparative analysis between radiotracer uptake and values extracted from immunohistochemistry staining. Results: In the lymphoma model, PET time-activity curves (TACs) revealed a differential response of [18F]FDB between tumoral and healthy tissues with average TBR varying from 2.45 to 3.16 between 5 to 90 min post-injection. In contrast, [18F]FDG demonstrated similar uptake profiles for tumoral and normal regions with TBR varying from 0.84 to 1.06 between these two time points. In the glioblastoma (GBM) model, the average TBRs were from 2.14 to 1.01 for [18F]FDB and from 0.95 to 1.65 for [18F]FDG. Therefore, inter-model comparisons showed significantly divergent responses (p < 0.01) of [18F]FDB between lymphoma and GBM, while [18F]FDG demonstrated overlap (p = 0.04) between the groups. Tumor characterization with histology (based mainly on Hoechst and CD79), as well as with MRI was overall in better agreement with [18F]FDB-PET than [18F]FDG with regard to tumor selectivity. Conclusions: [18F]FDB-PET demonstrated considerably greater specificity for CNSL when compared to [18F]FDG. It also permitted a more precise definition of target volume compared to contrast-enhanced MRI. Therefore, the potential of [18F]FDB-PET to distinguish CNSL from GBM is quite evident and will be further investigated in humans.
Collapse
|
10
|
Chantepie S, Hovhannisyan N, Guillouet S, Pelage JP, Ibazizene M, Bodet-Milin C, Carlier T, Gac AC, Réboursière E, Vilque JP, Kraeber-Bodéré F, Manrique A, Damaj G, Leporrier M, Barré L. 18F-Fludarabine PET for Lymphoma Imaging: First-in-Humans Study on DLBCL and CLL Patients. J Nucl Med 2018; 59:1380-1385. [DOI: 10.2967/jnumed.117.206920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
|
11
|
Hovhannisyan N, Dhilly M, Fidalgo M, Fillesoye F, Guillouet S, Sola B, Barré L. [18F]Fludarabine-PET in a murine model of multiple myeloma. PLoS One 2017; 12:e0177125. [PMID: 28472196 PMCID: PMC5417674 DOI: 10.1371/journal.pone.0177125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/21/2017] [Indexed: 11/30/2022] Open
Abstract
Purpose Multiple myeloma (MM) is a haematological malignancy that affects plasma cells in the bone marrow. Recently, [18F]fludarabine has been introduced as an innovative PET radiotracer for imaging lymphoma. It demonstrated a great potential for accurate imaging of lymphoproliferative disorders. With the goal to question the usefulness of [18F]fludarabine-PET in other haematological diseases, an in vivo MM model was investigated. Methods RPMI8226-GFP-Luc MM cells expressing the green fluorescent protein (GFP) as well as the luciferase reporter (Luc) were derived from the parental RPMI8226 cells. They were injected subcutaneously into the flank of nude mice. Myeloma tumour growth was followed using bioluminescence-based imaging (BLI) and characterised by immunohistochemistry (IHC). The tumour specificity of [18F]fludarabine was evaluated and compared to [18F]FDG. Results The tumoural uptake of [18F]FDG was greater than that of [18F]fludarabine. However, the quantitative data extracted from IHC stainings were in better agreement with [18F]fludarabine, when compared to [18F]FDG. The relationship between the tumoural uptake of [18F]-labelled tracers and the BLI quantitative data was also in favour of [18F]fludarabine. Conclusion Our results suggest that [18F]fludarabine-PET might represent an alternative and perhaps more specific modality for MM imaging when compared to [18F]FDG. Nevertheless, more investigations are required to extend this conclusion to humans.
Collapse
Affiliation(s)
- Narinée Hovhannisyan
- CEA, DRF/I2BM, LDM-TEP group, GIP Cyceron, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, CHU Caen, ISTCT/LDM-TEP group, Caen, France
- * E-mail:
| | - Martine Dhilly
- CEA, DRF/I2BM, LDM-TEP group, GIP Cyceron, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, CHU Caen, ISTCT/LDM-TEP group, Caen, France
| | - Martin Fidalgo
- Normandie Univ, INSERM UMR1245, UNICAEN, UNIROUEN, Caen, France
| | - Fabien Fillesoye
- CEA, DRF/I2BM, LDM-TEP group, GIP Cyceron, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, CHU Caen, ISTCT/LDM-TEP group, Caen, France
| | - Stéphane Guillouet
- CEA, DRF/I2BM, LDM-TEP group, GIP Cyceron, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, CHU Caen, ISTCT/LDM-TEP group, Caen, France
| | - Brigitte Sola
- Normandie Univ, INSERM UMR1245, UNICAEN, UNIROUEN, Caen, France
| | - Louisa Barré
- CEA, DRF/I2BM, LDM-TEP group, GIP Cyceron, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, CHU Caen, ISTCT/LDM-TEP group, Caen, France
| |
Collapse
|