1
|
Barman S, Roy SM, Kishore P, Ghosh M, Bag P, Sarkar AK, Ghatak T, Maji PS, Basu A, Mukherjee R, Ghosh SK, Chowdhury AD, Maity AR. Concurrent targeted delivery of doxorubicin and curcumin to the cancer cells using simple and versatile ligand-installed multifaceted chitosan-based nanoconjugates. J Mater Chem B 2025. [PMID: 39834258 DOI: 10.1039/d4tb01809e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Existing chemotherapeutic approaches against refractory cancers are ineffective due to off-target effects, inefficient delivery, and inadequate accumulation of anticancer drugs at the tumor site, which causes limited efficiency of drug treatment and toxicity to neighboring healthy cells. The development of nano-based drug delivery systems (DDSs) with the goal of delivering desired therapeutic doses to the diseased cells and has already proven to be a promising strategy to address these challenges. Our study focuses on achieving an efficient tumor-targeted delivery of a combination of drugs for therapeutic benefits by developing a versatile DDS by following a simple one-step chemical approach. We used low-molecular-weight chitosan and modified its primary amine groups with reactive forms of cholesterol and folic acid by simple chemical tools and thus prepared folic acid-chitosan-cholesterol graft copolymer. The polymer contains numerous residual primary amine groups, which offer enough water solubility and positive charge to its polymeric backbone to foster the interaction of negatively charged and/or hydrophobic drugs to load and encapsulate a wide variety of drugs within it via various non-bonding interactions. We used curcumin and doxorubicin as the combination of drugs and thus finally prepared targeted nanoconjugates (targeted NCs). In vitro cellular experiments show that our developed targeted NCs demonstrate 3-5 times higher cellular uptake than non-targeted NCs at various incubation times (2 h, 8 h, and 12 h) in KB cells where folate receptors are overexpressed. This enhanced cellular uptake of targeted NCs and the following delivery of drugs in the cytosol and its disposition to the nucleus exhibit a substantial amount of toxicity to KB cells towards an effective therapeutic strategy for treatment.
Collapse
Affiliation(s)
- Sourav Barman
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, 700135, India.
| | - Sayoni Maitra Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, 700135, India.
| | - Purvi Kishore
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, 700135, India.
| | - Malabika Ghosh
- Amity Institute of Nanotechnology, Amity University, Kolkata, West Bengal, 700135, India
| | - Pousali Bag
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, 700135, India.
| | - Ankan Kumar Sarkar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Tapas Ghatak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Partha Sona Maji
- Department of Physics, Amity Institute of Applied Sciences, Amity University, Kolkata, West Bengal, 700135, India
| | - Arnab Basu
- Department of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute, Belur Math, Howrah, West Bengal, 711202, India
| | - Rupam Mukherjee
- Department of Physics, Presidency University, Bangalore, Karnataka, 560064, India
| | - Surya K Ghosh
- Department of Physics, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University, Kolkata, West Bengal, 700135, India
| | - Amit Ranjan Maity
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
2
|
Aslan TN. Cationic Micelle-like Nanoparticles as the Carrier of Methotrexate for Glioblastoma Treatment. Molecules 2024; 29:5977. [PMID: 39770065 PMCID: PMC11678594 DOI: 10.3390/molecules29245977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In the present study, ultra-small, magnetic, oleyl amine-coated Fe3O4 nanoparticles were synthesized and stabilized with a cationic ligand, cetyltrimethylammonium bromide, and an anticancer drug, methotrexate, was incorporated into a micelle-like nanoparticle structure for glioblastoma treatment. Nanoparticles were further characterized for their physicochemical properties using spectroscopic methods. Drug incorporation efficiency, drug loading, and drug release profile of the nanoparticles were investigated. According to the results, max incorporation efficiency% of 89.5 was found for 25 µg/mL of methotrexate-loaded nanoparticles. The cumulative amount of methotrexate released reached 40% at physiological pH and 85% at a pH of 5.0 up to 12 h. The toxicity and anticancer efficacy of the nanoparticles were also studied on U87 cancer and L929 cells. IC50 concentration of nanoparticles reduced cell viability to 49% in U87 and 72% in L929 cells. The cellular uptake of nanoparticles was found to be 1.92-fold higher in U87 than in L929 cells. The total apoptosis% in U87 cells was estimated to be ~10-fold higher than what was observed in the L929 cells. Nanoparticles also inhibited the cell motility and prevented the metastasis of U87 cell lines. Overall, designed nanoparticles are a promising controlled delivery system for methotrexate to the cancer cells to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
- Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Necmettin Erbakan University, Konya 42090, Turkey;
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42140, Turkey
| |
Collapse
|
3
|
Deng H, Zhang Y, Cai X, Yin Z, Yang Y, Dong Q, Qiu Y, Chen Z. Dual-Targeted Graphitic Cascade Nanozymes for Recognition and Treatment of Helicobacter pylori. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306155. [PMID: 37991257 DOI: 10.1002/smll.202306155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Helicobacter pylori (H. pylori) is the major etiological factor of a variety of gastric diseases. However, the treatment of H. pylori is challenged by the destruction of targeted drugs by gastric acid and pepsin. Herein, a dual-targeted cascade catalytic nanozyme PtCo@Graphene@Hemin-2(L-arginine) (PtCo@G@H2A) is designed for the treatment of H. pylori. The dual-targeting ability of PtCo@G@H2A is derived from directly targeting the receptor protein of H. pylori through hemin and responding to the acidic environment to cause charge reversal (protonation of L-arginine) to capture H. pylori, achieving efficient targeting effect. Compared with the single-targeting strategy relying on hemin, the dual-targeting strategy can greatly improve the targeting rate, achieving an increase of 850% targeting rate. At the concentration of NaHCO3 in intestinal fluid, the surface potential of PtCo@G@H2A can be quickly restored to avoid side effects. Meanwhile, PtCo@G@H2A has pH-responsive oxidase-like activity, which can generate nitric oxide (NO) through a cascade catalytic process that first generates reactive oxygen species (ROS) with oxygen, and further oxidizes L-arginine through ROS, realizing a superior acid-selective bactericidal effect. Overall, it proposes a promising strategy for the treatment of H. pylori that maintains high targeting and therapeutic effects in the environment of gastric acid and pepsin.
Collapse
Affiliation(s)
- Hui Deng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xinqi Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Ye Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
4
|
Hu F, Zhang R, Guo W, Yan T, He X, Hu F, Ren F, Ma X, Lei J, Zheng W. PEGylated-PLGA Nanoparticles Coated with pH-Responsive Tannic Acid-Fe(III) Complexes for Reduced Premature Doxorubicin Release and Enhanced Targeting in Breast Cancer. Mol Pharm 2021; 18:2161-2173. [PMID: 32515968 DOI: 10.1021/acs.molpharmaceut.0c00321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) have been widely used as delivery vehicles for chemotherapy drugs. However, premature drug release in PLGA NPs can damage healthy tissue and cause serious adverse effects during systemic administration. Here, we report a tannic acid-Fe(III) (FeIII-TA) complex-modified PLGA nanoparticle platform (DOX-TPLGA NPs) for the tumor-targeted delivery of doxorubicin (DOX). A PEGylated-PLGA inner core and FeIII-TA complex outer shell were simultaneously introduced to reduce premature drug release in blood circulation and increase pH-triggered drug release in tumor tissue. Compared to the unmodified NPs, the initial burst rate of DOX-TPLGA NPs was significantly reduced by nearly 2-fold at pH 7.4. Moreover, the cumulative drug release rate at pH 5.0 was 40% greater than that at pH 7.4 due to the pH-response of the FeIII-TA complex. Cellular studies revealed that the TPLGA NPs had enhanced drug uptake and superior cytotoxicity of breast cancer cells in comparison to free DOX. Additionally, the DOX-TPLGA NPs efficiently accumulated in the tumor site of 4T1-bearing nude mice due to the enhanced permeability and retention (EPR) effect and reached a tumor inhibition rate of 85.53 ± 8.77% (1.31-fold versus DOX-PLGA NPs and 3.12-fold versus free DOX). Consequently, the novel TPLGA NPs represent a promising delivery platform to enhance the safety and efficacy of chemotherapy drugs.
Collapse
Affiliation(s)
- Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruihuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ting Yan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiujuan He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fengzhi Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Chiu HI, Samad NA, Fang L, Lim V. Cytotoxicity of targeted PLGA nanoparticles: a systematic review. RSC Adv 2021; 11:9433-9449. [PMID: 35423427 PMCID: PMC8695459 DOI: 10.1039/d1ra00074h] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in nanotechnology have contributed tremendously to the development and revolutionizing of drug delivery systems in the field of nanomedicine. In particular, targeting nanoparticles based on biodegradable poly(lactic-co-glycolic acid) (PLGA) polymers have gained much interest. However, PLGA nanoparticles remain of concern for their effectiveness against cancer cells and their toxicity to normal cells. The aim of this systematic review is to identify a promising targeting PLGA nanoformulation based on the comparison study of their cytotoxicity potency in different cell lines. A literature search was conducted through the databases of Google Scholar, PubMed, ScienceDirect, Scopus and SpringerLink. The sources studied were published between 2009 and 2019, and a variety of keywords were utilized. In total, 81 manuscripts that met the inclusion and exclusion criteria were selected for analysis based on their cytotoxicity, size, zeta potential, year of publication, type of ligand, active compounds and cell line used. The half maximal inhibitory concentration (IC50) for cytotoxicity was the main measurement in this data extraction, and the SI units were standardized to μg mL-1 for a better view of comparison. This systematic review also identified that cytotoxicity potency was inversely proportional to nanoparticle size. The PLGA nanoparticles predominantly exhibited a size of less than 300 nm and absolute zeta potential ∼20 mV. In conclusion, more comprehensive and critical appraisals of pharmacokinetic, pharmacokinetic, toxicokinetic, in vivo and in vitro tests are required for the investigation of the full value of targeting PLGA nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| |
Collapse
|
6
|
Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020; 284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
As one of the most promising and effective delivery systems for targeted controlled-release drugs, nanocarriers (NCs) have been widely studied. Although the development of nanoparticle preparations is very prosperous, the safety and effectiveness of NCs are not guaranteed and cannot be precisely controlled due to the unclear processes of absorption, distribution, metabolism, and excretion (ADME), as well as the drug release mechanism of NCs in the body. Thus, the approval of NCs for clinical use is extremely rare. This paper reviews the research progress and challenges of using NCs in vivo based on a review of several hundred closely related publications. First, the ADME of NCs under different administration routes is summarized; second, the influences of the physical, chemical, and biosensitive properties, as well as targeted modifications of NCs on their disposal process, are systematically analyzed; third, the tracer technology related to the in vivo study of NCs is elaborated; and finally, the challenges and perspectives of nanoparticle research in vivo are introduced. This review may help readers to understand the current research progress and challenges of nanoparticles in vivo, as well as of tracing technology in nanoparticle research, to help researchers to design safer and more efficient NCs. Furthermore, this review may aid researchers in choosing or exploring more suitable tracing technologies to further advance the development of nanotechnology.
Collapse
|
7
|
Wang L, Du J, Han X, Dou J, Shen J, Yuan J. Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1994-2006. [PMID: 32589511 DOI: 10.1080/09205063.2020.1788371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nano-drug delivery system (NDDS) has attracted widespread attention for their controlled drug release. In this work, keratin nanoparticles (KNPs) were prepared by self-crosslinking. No toxic chemical crosslinkers were added in the whole procedure. The morphology and size of KNPs were tested by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The KNPs exhibited GSH and pH dual responsiveness as well as charge conversion, which were beneficial to tumor therapy. In addition, the anticancer drug of doxorubicin (DOX) could be loaded on KNPs by hydrophobicity and hydrogen bonds. The drug-loaded keratin nanoparticles (KDNPs) accelerated drug release under mimicked tumor microenvironments. In addition, KDNPs could effectively inhibit tumor cell growth while performing low toxicity on normal cells. Moreover, KDNPs could be uptaken by tumor cells through endocytosis. Based on the results, keratin-based nanoparticles were suitable candidates for drug microcarriers.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
8
|
Dai X, Bai Y, Zhang Y, Ma Z, Li J, Sun H, Zhang X. Protonation-Activity Relationship of Bioinspired Ionizable Glycomimetics for the Growth Inhibition of Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:3868-3879. [PMID: 35025257 DOI: 10.1021/acsabm.0c00424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Variations in physiological parameters (i.e., pH, redox potential, and ions) for distinct types of diseases make them attractive targets. Ionizable groups capable of pH-dependent charge conversion impart pH-switchable materials under acid condition through the protonation effect, which stimulates the emergence of various pH-inspired materials. However, it is confusing to distinguish preferable groups for high-efficiency drug-delivery vehicles attributing to the lack of perceiving the relationship between protonation and activity. Herein, we developed a series of bioinspired ionizable glycomimetics responses to the ambient variation from physiological environment (pH 7.4) to bacterial infectious acidic microenvironment (pH 6.0) to explore the protonation-activity relationship of various ionizable groups. The nanoparticles are coated with bacterial adhesion molecules galactose and fucose to target Pseudomonas aeruginosa. Moreover, the particle cores were composed of ionizable polymers responding to acidic microenvironment changes and entrapped antibiotic payload. Ionizable glyconanoparticles targeted bacteria and local cues as triggers to transfer payloads in on-demand patterns for the inhibition of bacteria-related infection. Significantly, we find that the nanoparticles with the pH-sensitive block of ionizable poly(2-(diisopropylamino)ethyl methacrylate) (pDPA) exhibit predominant bacterial adhesion and killing and growth inhibition of biofilm in acid environment (pH 6.0) due to the ionizable polymer protonation effect with more positive charge cooperated with the lectin-targeted effect of polysaccharide causing a huge bacterial aggregation and a highly favorable germicidal effect. The nanoparticles with poly(2-(hexamethyleneimino)ethyl methacrylate) (pHMEMA) have suboptimal antibacterial activity but advanced protonation at pH 6.3 compared to pDPA at 6.1, suggesting its selection as an applicable pH-switchable group for a slightly higher acid microenvironment like tumor (pH 6.9-6.5) because of the efficient performance after protonation than at deprotonation. On the other hand, the glycomimetic containing poly(2-(dibutylamino)ethyl methacrylate) (pDBA) as a pH-sensitive moiety displayed weak antimicrobial activity and superior stability before protonation (pH 4.7), which make it possible to prevent premature drug leakage, suggesting that pDBA is a good candidate to be applied to construct pH-sensitive drug-delivery carriers for the treatment of bacteria-related infection with a low acidic microenvironment. Overall, the structure-activity relationship of ionizable glycomimetics for the inhibition of bacteria signifies not only the development of a drug-delivery system but also the mechanism-dependent treatment of nanomedicine for infectious diseases.
Collapse
Affiliation(s)
- Xijuan Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yayun Bai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Dou J, Wu Q, Li Y, Du J, Wan X, Han X, Yuan J, Meng X, Shen J. Keratin-Poly(2-methacryloxyethyl phosphatidylcholine) Conjugate-Based Micelles as a Tumor Micro-Environment-Responsive Drug-Delivery System with Long Blood Circulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3540-3549. [PMID: 32192339 DOI: 10.1021/acs.langmuir.0c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loaded micelles with long circulation time in blood and stimuli-responsiveness under the tumor micro-environment can significantly enhance therapeutic efficacy. In this report, human hair keratin was extracted with a reduction method and then conjugated with zwitterionic poly(2-methacryloxyethyl phosphatidylcholine, MPC) via thiol chain transfer polymerization (thiol CTP). Subsequently, keratin-polyMPC conjugates (KPC) were prepared into micelles and loaded with doxorubicin (DOX) by self-assembly. These micelles exhibited pH, glutathione (GSH), and enzyme triple-responsiveness as well as charge reversibility under the tumor micro-environment. In addition, these micelles showed high toxicity against A549 cells while low toxicity to normal cells. In vivo anticancer efficacy results revealed that these micelles showed better therapeutic efficiency than free DOX. Furthermore, these carriers exhibited prolonged circulation time, good stability, and no hemolysis in blood. Based on the results, these drug delivery systems of micelles were proper candidates as drug carriers.
Collapse
Affiliation(s)
- Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiong Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2019; 230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
In recent years, phospholipid-polyethylene glycol-derived functional conjugates have been widely employed to decorate different nanomaterials, due to their excellent biocompatibility, long blood circulation characteristics, and specific targeting capability. Numerous in vivo studies have demonstrated that nanomedicines peripherally engineered with phospholipid-polyethylene glycol-derived functional conjugates show significantly increased selective and efficient internalization by target cells/tissues. Targeting moieties including small-molecule ligands, peptides, proteins, and antibodies are generally conjugated onto PEGylated phospholipids to decorate liposomes, micelles, hybrid nanoparticles, nanocomplexes, and nanoemulsions for targeted delivery of diagnostic and therapeutic agents to diseased sites. In this review, the synthesis methods of phospholipid-polyethylene glycol-derived functional conjugates, biophysicochemical properties of nanomedicines decorated with these conjugates, factors dominating their targeting efficiency, as well as their applications for in vivo molecular imaging and targeted therapy were summarized and discussed.
Collapse
|
11
|
Fang D, Pi M, Pan Z, Song N, He X, Li J, Luo F, Tan H, Li Z. Stable, Bioresponsive, and Macrophage-Evading Polyurethane Micelles Containing an Anionic Tripeptide Chain Extender. ACS OMEGA 2019; 4:16551-16563. [PMID: 31616835 PMCID: PMC6788071 DOI: 10.1021/acsomega.9b02326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Polymeric nanocarriers have been extensively used in medicinal applications for drug delivery. However, intravenous nanocarriers circulating in the blood will be rapidly cleared from the mononuclear macrophage system. The surface physicochemical characterizations of nanocarriers are the primary factors to determine their fate in vivo, such as evading the reticuloendothelial system, exhibiting long blood circulation times, and accumulating in the targeted site. In this work, we develop a series of polyurethane micelles containing segments of an anionic tripeptide, hydrophilic mPEG, and disulfide bonds. It is found that the long hydrophilic mPEG can shield the micellar surface and have a synergistic effect with the negatively charged tripeptide to minimize macrophage phagocytosis. Meanwhile, the disulfide bond can rapidly respond to the intracellular reduction environment, leading to the acceleration of drug release and improvement of the therapeutic effect. Our results verify that these anionic polyurethane micelles hold great potential in the development of the stealth immune system and controllable intracellular drug transporters.
Collapse
Affiliation(s)
- Danxuan Fang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Menghan Pi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhicheng Pan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Nijia Song
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xueling He
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Liu P, Wu Q, Li Y, Li P, Yuan J, Meng X, Xiao Y. DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids Surf B Biointerfaces 2019; 181:1012-1018. [PMID: 31382328 DOI: 10.1016/j.colsurfb.2019.06.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Keratin is a good candidate for drug carrier due to its good biocompatibility, low immunogenicity, redox responsiveness, and abundant renewable sources. Herein, doxorubicin (DOX) was first conjugated with keratin through a pH-sensitive hydrazone linkage, and then prepared into particulate drug carrier via desolvation method. The size, morphology, and surface potential of keratin-DOX nanoparticles (KDNPs) were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The drug release results showed that KDNPs performed an excellent pH-sensitive behavior under acidic tumor microenvironment. Cytotoxicity assay by MTT confirmed that KDNPs exhibited the enhanced cytotoxicity against A549 cells. Furthermore, KDNPs had higher therapeutic efficiency in vivo than free DOX. Hemolysis assay indicated that KDNPs was blood compatible. All the results identified that KDNPs are well suited as an ideal drug carrier.
Collapse
Affiliation(s)
- Pengcheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China.
| | - Yinghong Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
13
|
Nayak R, Meerovich I, Dash AK. Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems for Cancer Treatment. AAPS PharmSciTech 2019; 20:160. [PMID: 30968269 DOI: 10.1208/s12249-019-1367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
Over the last several decades, nanoparticulate delivery systems have emerged as advanced drug and gene delivery tools for cancer therapy. However, their translation into clinical use still poses major challenges. Even though many innovative nanoparticulate approaches have shown very positive results both in vitro and in vivo, few of them have found a place in clinical practice. Possible factors responsible for the existing gap in the translation of nanomedicine to clinical practice may include oversimplification of enhanced permeability and retention effect, lack of correlation between the in vivo animal data vs their translation in human, and challenging multiple biological steps experienced during systemic delivery of nanomedicine. Understanding these challenges and coming up with solutions to overcome them is an important step in effective translation of nanomedicine into clinical practice. This review focuses on advancements in the field of nanomedicine used for anti-cancer therapy, including passive targeting, active targeting, and stimuli-controlled delivery. The review further reveals some of the challenges that are currently faced by pharmaceutical scientists in translation of nanomedicine; these include lack of adequate models for preclinical testing that can predict efficacy in humans, absence of appropriate regulatory guidelines for their approval processes, and difficulty in scale-up of the manufacturing of nanodrug delivery systems. A better understanding of these challenges will help us in filling the gap between the bench and bedside in cancer therapy.
Collapse
|
14
|
Mao HL, Qian F, Li S, Shen JW, Ye CK, Hua L, Zhang LZ, Wu DM, Lu J, Yu RT, Liu HM. Delivery of Doxorubicin from Hyaluronic Acid-Modified Glutathione-Responsive Ferrocene Micelles for Combination Cancer Therapy. Mol Pharm 2019; 16:987-994. [PMID: 30624945 DOI: 10.1021/acs.molpharmaceut.8b00862] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A combination of different chemotherapy approaches can obtain the best response for many cancers. However, the greatest challenge is the development of a nanoparticle formulation that can encapsulate different chemotherapeutic agents to achieve the proper synergetic chemotherapy for the tumor. Here, amphiphilic ferrocenium-tetradecyl (Fe-C14) was constructed to form cationic micelles in an aqueous solution via self-assembly. Then, it was coated by hyaluronic acid (HA) through electrostatic interactions to generate HA-Fe-C14 micelles. The HA-Fe-C14 micelles were used to deliver doxorubicin (DOX), and it showed that the DOX could be released rapidly under a high-GSH tumor environment. The HA-Fe-C14/DOX micelles were able to accumulate efficiently in tumor and showed significant anticancer effect both in vitro and in vivo. These results suggest that HA-Fe-C14/DOX micelles are a useful drug delivery system that enhances synergic antitumor treatment effects.
Collapse
Affiliation(s)
- Hong-Lin Mao
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Feng Qian
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Shun Li
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Jia-Wei Shen
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Cheng-Kun Ye
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Lei Hua
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Long-Zhen Zhang
- Department of Radiation Oncology , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Cancer Institute of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province School of Life Science , Jiangsu Normal University , Xuzhou 221116 , P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province School of Life Science , Jiangsu Normal University , Xuzhou 221116 , P.R. China
| | - Ru-Tong Yu
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Hong-Mei Liu
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| |
Collapse
|
15
|
Pei M, Jia X, Li G, Liu P. Versatile Polymeric Microspheres with Tumor Microenvironment Bioreducible Degradation, pH-Activated Surface Charge Reversal, pH-Triggered “off–on” Fluorescence and Drug Release as Theranostic Nanoplatforms. Mol Pharm 2018; 16:227-237. [DOI: 10.1021/acs.molpharmaceut.8b00957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mingliang Pei
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xu Jia
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guoping Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Wang M, You C, Gao Z, Wu H, Sun B, Zhu X, Chen R. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1360-1374. [PMID: 29611463 DOI: 10.1080/09205063.2018.1460141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mingxin Wang
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , China
| | - Chaoqun You
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , China
| | - Zhiguo Gao
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , China
| | - Hongshuai Wu
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , China
| | - Baiwang Sun
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , China
| | - Xiaoli Zhu
- b Department of Respiratory Medicine , The Affiiated Zhongda Hospital of Southeast University , Nanjing , China
| | - Renjie Chen
- c Department of Otolaryngology-Head and Neck Surgery , The Second Affiliated Hospital of Nanjing Medical University , Nanjing , China
| |
Collapse
|
17
|
Chen WL, Li F, Tang Y, Yang SD, Li JZ, Yuan ZQ, Liu Y, Zhou XF, Liu C, Zhang XN. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int J Nanomedicine 2017; 12:4241-4256. [PMID: 28652730 PMCID: PMC5473598 DOI: 10.2147/ijn.s129748] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Fang Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Shu-di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Ji-Zhao Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Xiao-Feng Zhou
- Department of Ultrasound, Changshu Hospital of Traditional Chinese Medicine, Changshu
| | - Chun Liu
- Department of Pharmacy, The Hospital of Suzhou People's Hospital Affiliated to Nanjing Medical University, Suzhou, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| |
Collapse
|
18
|
Reactive oxygen species activated nanoparticles with tumor acidity internalization for precise anticancer therapy. J Control Release 2017; 255:142-153. [DOI: 10.1016/j.jconrel.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/19/2017] [Accepted: 04/03/2017] [Indexed: 01/11/2023]
|
19
|
Cui H, Huan ML, Ye WL, Liu DZ, Teng ZH, Mei QB, Zhou SY. Mitochondria and Nucleus Dual Delivery System To Overcome DOX Resistance. Mol Pharm 2017; 14:746-756. [DOI: 10.1021/acs.molpharmaceut.6b01016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Han Cui
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Meng-lei Huan
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Wei-liang Ye
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Dao-zhou Liu
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Zeng-hui Teng
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Qi-Bing Mei
- Key
Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica
of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, 710032, China
| | - Si-yuan Zhou
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
- Key
Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica
of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
20
|
Wu J, Zhang J, Deng C, Meng F, Cheng R, Zhong Z. Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3985-3994. [PMID: 28079367 DOI: 10.1021/acsami.6b15105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
PLGA-based nanomedicines have enormous potential for targeted cancer therapy. To boost their stability, targetability, and intracellular drug release, here we developed novel multifunctional PLGA anticancer nanomedicines by combining a reductively cleavable surfactant (RCS), vitamin E-SS-oligo(methyl diglycol l-glutamate), with covalent hyaluronic acid (HA) coating. Reduction-sensitive HA-coated PLGA nanoparticles (rHPNPs) were obtained with small sizes of 55-61 nm and ζ potentials of -26.7 to -28.8 mV at 18.4-40.3 wt % RSC. rHPNPs were stable against dilution and 10% FBS while destabilized under reductive condition. The release studies revealed significantly accelerated docetaxel (DTX) release in the presence of 10 mM glutathione. DTX-rHPNPs exhibited potent and specific antitumor effect to CD44 + A549 lung cancer cells (IC50 = 0.52 μg DTX equiv/mL). The in vivo studies demonstrated that DTX-rHPNPs had an extended circulation time and greatly enhanced tolerance in mice. Strikingly, DTX-rHPNPs completely inhibited growth of orthotopic human A549-Luc lung tumor in mice, leading to a significantly improved survival rate and reduced adverse effect as compared to free DTX. This study highlights that advanced nanomedicines can be rationally designed by combining functional surfactants and surface coating.
Collapse
Affiliation(s)
- Jintian Wu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
21
|
Singh PK, Sah P, Meher JG, Joshi S, Pawar VK, Raval K, Singh Y, Sharma K, Kumar A, Dube A, Chourasia MK. Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Adv 2016. [DOI: 10.1039/c6ra06007b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel chitosan-coated nanoparticles with a high payload of amphotericin B (AmB) and doxorubicin (Dox) were formulated employing a nanoprecipitation technique and evaluated for antileishmanial activity against Leishmania donovani.
Collapse
|