1
|
Kehrein J, Bunker A, Luxenhofer R. POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles. Mol Pharm 2024; 21:3356-3374. [PMID: 38805643 PMCID: PMC11394009 DOI: 10.1021/acs.molpharmaceut.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Block copolymers, composed of poly(2-oxazoline)s and poly(2-oxazine)s, can serve as drug delivery systems; they form micelles that carry poorly water-soluble drugs. Many recent studies have investigated the effects of structural changes of the polymer and the hydrophobic cargo on drug loading. In this work, we combine these data to establish an extended formulation database. Different molecular properties and fingerprints are tested for their applicability to serve as formulation-specific mixture descriptors. A variety of classification and regression models are built for different descriptor subsets and thresholds of loading efficiency and loading capacity, with the best models achieving overall good statistics for both cross- and external validation (balanced accuracies of 0.8). Subsequently, important features are dissected for interpretation, and the DrugBank is screened for potential therapeutic use cases where these polymers could be used to develop novel formulations of hydrophobic drugs. The most promising models are provided as an open-source software tool for other researchers to test the applicability of these delivery systems for potential new drug candidates.
Collapse
Affiliation(s)
- Josef Kehrein
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Robert Luxenhofer
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Bento-Oliveira A, Starosta R, de Almeida RFM. Interaction of the antifungal ketoconazole and its diphenylphosphine derivatives with lipid bilayers: Insights into their antifungal action. Arch Biochem Biophys 2024; 753:109919. [PMID: 38307316 DOI: 10.1016/j.abb.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Radosław Starosta
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
3
|
Taher M, Susanti D, Haris MS, Rushdan AA, Widodo RT, Syukri Y, Khotib J. PEGylated liposomes enhance the effect of cytotoxic drug: A review. Heliyon 2023; 9:e13823. [PMID: 36873538 PMCID: PMC9976326 DOI: 10.1016/j.heliyon.2023.e13823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer is a second leading disease-causing death worldwide that will continuously grow as much as 70% in the next 20 years. Chemotherapy is still becoming a choice for cancer treatment despite its severity of side effects and low success rate due to ineffective delivery of the chemodrugs. Since it was introduced in 1960, significant progress has been achieved in the use of liposomes in drug delivery. The study aims to review relevant literatures on role of PEGylated liposome in enhancing cytotoxic activity of several agents. A systematic literature on the use of PEGylated liposomes in anticancer research via Scopus, Google scholar and PubMed databases was conducted for studies published from 2000 to 2022. A total of 15 articles were selected and reviewed from 312 articles identified covering a variety of anticancer treatments by using PEGylated liposomes. PEGylated liposome which is purposed to achieve steric equilibrium is one of enhanced strategies to deliver anticancer drugs. It has been shown that some improvement of delivery and protection form a harsh gastric environment of several anticancer drugs when they are formulated in a PEGylated liposome. One of the successful drugs that has been clinically used is Doxil®, followed by some other drugs in the pipeline Various drugs (compounds) had been used to enhance the efficacy of PEGylated liposomes for targeted cancer cells in vitro and in vivo. In conclusion, PEGylated liposomes enhance drug activities and have great potential to become efficient anticancer delivery to follow Doxil® in the clinical setting.
Collapse
Affiliation(s)
- Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.,Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Aina Atiqah Rushdan
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Riyanto Teguh Widodo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yandi Syukri
- Faculty of Pharmacy, University Islam Indonesia, 55584, Yogyakarta, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, 60115, Surabaya, Indonesia
| |
Collapse
|
4
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
5
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Drug-loading capacity of polylactide-based micro- and nanoparticles - Experimental and molecular modeling study. Int J Pharm 2020; 591:120031. [PMID: 33130219 DOI: 10.1016/j.ijpharm.2020.120031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023]
Abstract
Micro- and nanostructures prepared from biodegradable homopolymers and amphiphilic block copolymers (AmBCs) have found application as drug-delivery systems (DDSs). The ability to accumulate a drug is a very important parameter characterizing a given DDS. This work focuses on the impact of DDS size, the packing of polymer chains in the DDS, and drug - polymer matrix compatibility on the hydrophobic drug - loading capacity (DLC) of nano/microcarriers prepared from a biodegradable polymer or its copolymer. Using experimental measurements in combination with atomistic molecular dynamics simulations, an analysis of curcumin encapsulation in microspheres (MSs) from polylactide (PLA) homopolymer and nanoparticles (NPs) from PLA-block-poly(2-methacryloyloxyethylphosphorylcholine) AmBC was performed. The results show that curcumin has good affinity for the PLA matrix due to its hydrophobic nature. However, the DLC value is limited by the fact that curcumin only accumulates in the peripheral part of these structures. Such uneven drug distribution in the PLA matrix results from the non-homogeneous density of MSs (non-uniform packing of the polymer chains in the coil). The results also indicate that the MSs can retain a greater amount of hydrophobic drug compared to the NPs, which is associated with the formation of drug aggregates inside the PLA microparticles.
Collapse
|
7
|
Kasparyan G, Poojari C, Róg T, Hub JS. Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations. J Phys Chem B 2020; 124:8811-8821. [PMID: 32924486 DOI: 10.1021/acs.jpcb.0c03359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Itraconazole is a triazole drug widely used in the treatment of fungal infections, and it is in clinical trials for treatment of several cancers. However, the drug suffers from poor solubility, while experiments have shown that itraconazole delivery in liposome nanocarriers improves both circulation half-life and tissue distribution. The drug release mechanism from the nanocarrier is still unknown, and it depends on several factors including membrane stability against defect formation. In this work, we used molecular dynamics simulations and potential of mean force (PMF) calculations to quantify the influence of itraconazole on pore formation over lipid membranes, and we compared the effect by itraconazole with a pore-stabilizing effect by the organic solvent dimethyl sulfoxide (DMSO). According to the PMFs, both itraconazole and DMSO greatly reduce the free energy of pore formation, by up to ∼20 kJ mol-1. However, whereas large concentrations of itraconazole of 8 mol % (relative to lipid) were required, only small concentrations of a few mole % DMSO (relative to water) were sufficient to stabilize pores. In addition, itraconazole and DMSO facilitate pore formation by different mechanisms. Whereas itraconazole predominantly aids the formation of a partial defect with a locally thinned membrane, DMSO mainly stabilizes a transmembrane water needle by shielding it from the hydrophobic core. Notably, the two distinct mechanisms act cooperatively upon adding both itraconazole and DMSO to the membrane, as revealed by an additional reduction of the pore free energy. Overall, our simulations reveal molecular mechanisms and free energies of membrane pore formation by small molecules. We suggest that the stabilization of a locally thinned membrane as well as the shielding of a transmembrane water needle from the hydrophobic membrane core may be a general mechanism by which amphiphilic molecules facilitate pore formation over lipid membranes at sufficient concentrations.
Collapse
Affiliation(s)
- Gari Kasparyan
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Chetan Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Tomasz Róg
- Department of Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
9
|
Poojari C, Zak A, Dzieciuch-Rojek M, Bunker A, Kepczynski M, Róg T. Cholesterol Reduces Partitioning of Antifungal Drug Itraconazole into Lipid Bilayers. J Phys Chem B 2020; 124:2139-2148. [PMID: 32101005 PMCID: PMC7735721 DOI: 10.1021/acs.jpcb.9b11005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Cholesterol
plays a crucial role in modulating the physicochemical
properties of biomembranes, both increasing mechanical strength and
decreasing permeability. Cholesterol is also a common component of
vesicle-based delivery systems, including liposome-based drug delivery
systems (LDSs). However, its effect on the partitioning of drug molecules
to lipid membranes is very poorly recognized. Herein, we performed
a combined experimental/computational study of the potential for the
use of the LDS formulation for the delivery of the antifungal drug
itraconazole (ITZ). We consider the addition of cholesterol to the
lipid membrane. Since ITZ is only weakly soluble in water, its bioavailability
is limited. Use of an LDS has thus been proposed. We studied lipid
membranes composed of cholesterol, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), and ITZ using a combination of
computational molecular dynamics (MD) simulations of lipid bilayers
and Brewster angle microscopy (BAM) experiments of monolayers. Both
experimental and computational results show separation of cholesterol
and ITZ. Cholesterol has a strong preference to orient parallel to
the bilayer normal. However, ITZ, a long and relatively rigid molecule
with weakly hydrophilic groups along the backbone, predominantly locates
below the interface between the hydrocarbon chain region and the polar
region of the membrane, with its backbone oriented parallel to the
membrane surface; the orthogonal orientation in the membrane could
be the cause of the observed separation. In addition, fluorescence
measurements demonstrated that the affinity of ITZ for the lipid membrane
is decreased by the presence of cholesterol, which is thus probably
not a suitable formulation component of an LDS designed for ITZ delivery.
Collapse
Affiliation(s)
- Chetan Poojari
- Department of Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.,Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Agata Zak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Tomasz Róg
- Department of Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
10
|
Khatib I, Tang P, Ruan J, Cipolla D, Dayton F, Blanchard JD, Chan HK. Formation of ciprofloxacin nanocrystals within liposomes by spray drying for controlled release via inhalation. Int J Pharm 2020; 578:119045. [PMID: 31981702 DOI: 10.1016/j.ijpharm.2020.119045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The present study was conducted to harness spray drying technology as a novel method of producing Ciprofloxacin nanocrystals inside liposomes (CNL) for inhalation delivery. Liposomal ciprofloxacin dispersions were spray dried with sucrose as a lyoprotectant in different mass ratios (0.5:1, 1:1 and 2:1 sucrose to lipids), along with 2% w/w magnesium stearate and 5% w/w isoleucine as aerosolization enhancers. Spray drying conditions were: inlet air temperature 50 °C, outlet air temperature 33-35 °C, atomizer rate 742 L/h and aspirator 35 m3/h. After spray drying, the formation of ciprofloxacin nanocrystals inside the liposomes was confirmed by cryo- transmission electron microscopy. The physiochemical characteristics of the spray dried powder (particle size, morphology, crystallinity, moisture content, drug encapsulation efficiency (EE), in vitro aerosolization performance and drug release) were determined. The EE of the liposomes was found to vary between 44 and 87% w/w as the sucrose content was increased from 25 to 57% w/w. The powders contained partially crystalline particles with a volume median diameter of ~1 µm. The powders had low water content (~2% wt.) and were stable at high relative humidity. Aerosol delivery using the Osmohaler® inhaler at a flow rate of 100 L/min produced an aerosol fine particle fraction (% wt. <5 µm) of 58-64%. The formulation with the highest sucrose content (2:1 w/w sucrose to lipid) demonstrated extended ciprofloxacin release from liposomes (80% released within 7 h) in comparison to the original liquid formulation (80% released within 2 h). In conclusion, a stable and inhalable CNL powder with controlled drug release was successfully prepared by spray drying.
Collapse
Affiliation(s)
- Isra Khatib
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, NSW 2052, Australia
| | | | | | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
A Perspective: Active Role of Lipids in Neurotransmitter Dynamics. Mol Neurobiol 2019; 57:910-925. [PMID: 31595461 PMCID: PMC7031182 DOI: 10.1007/s12035-019-01775-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022]
Abstract
Synaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to the membrane. Accordingly, when a lipophilic NT is on route to a membrane-buried binding site, it adheres on the membrane and, then, travels along its plane towards the receptor. In contrast, lipophobic NTs, which are destined to bind into receptors with extracellular binding sites, prefer the water phase. This membrane-based sorting splits the neurotransmission into membrane-independent and membrane-dependent mechanisms and should make the NT binding into the receptors more efficient than random diffusion would allow. The potential implications and notable exceptions to the mechanisms are discussed here. Importantly, maintaining specific membrane lipid compositions (MLCs) at the synapses, especially regarding anionic lipids, affect the level of NT-membrane association. These effects provide a plausible link between the MLC imbalances and neurological diseases such as depression or Parkinson’s disease. Moreover, the membrane plays a vital role in other phases of the NT life cycle, including storage and release from the synaptic vesicles, transport from the synaptic cleft, as well as their synthesis and degradation.
Collapse
|
12
|
Poojari C, Wilkosz N, Lira RB, Dimova R, Jurkiewicz P, Petka R, Kepczynski M, Róg T. Behavior of the DPH fluorescence probe in membranes perturbed by drugs. Chem Phys Lipids 2019; 223:104784. [PMID: 31199906 DOI: 10.1016/j.chemphyslip.2019.104784] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/09/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
Abstract
1,6-Diphenyl-1,3,5-hexatriene (DPH) is one of the most commonly used fluorescent probes to study dynamical and structural properties of lipid bilayers and cellular membranes via measuring steady-state or time-resolved fluorescence anisotropy. In this study, we present a limitation in the use of DPH to predict the order of lipid acyl chains when the lipid bilayer is doped with itraconazole (ITZ), an antifungal drug. Our steady-state fluorescence anisotropy measurements showed a significant decrease in fluorescence anisotropy of DPH embedded in the ITZ-containing membrane, suggesting a substantial increase in membrane fluidity, which indirectly indicates a decrease in the order of the hydrocarbon chains. This result or its interpretation is in disagreement with the fluorescence recovery after photobleaching measurements and molecular dynamics (MD) simulation data. The results of these experiments and calculations indicate an increase in the hydrocarbon chain order. The MD simulations of the bilayer containing both ITZ and DPH provide explanations for these observations. Apparently, in the presence of the drug, the DPH molecules are pushed deeper into the hydrophobic membrane core below the lipid double bonds, and the probe predominately adopts the orientation of the ITZ molecules that is parallel to the membrane surface, instead of orienting parallel to the lipid acyl chains. For this reason, DPH anisotropy provides information related to the less ordered central region of the membrane rather than reporting the properties of the upper segments of the lipid acyl chains.
Collapse
Affiliation(s)
- Chetan Poojari
- Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland
| | - Natalia Wilkosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Rafael B Lira
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Rafał Petka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, PO Box 64, FI-00014, Helsinki, Finland.
| |
Collapse
|
13
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
14
|
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol 2018; 9:1199. [PMID: 30420804 PMCID: PMC6215815 DOI: 10.3389/fphar.2018.01199] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jean L. Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Lajunen T, Nurmi R, Wilbie D, Ruoslahti T, Johansson NG, Korhonen O, Rog T, Bunker A, Ruponen M, Urtti A. The effect of light sensitizer localization on the stability of indocyanine green liposomes. J Control Release 2018; 284:213-223. [DOI: 10.1016/j.jconrel.2018.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
16
|
Wilkosz N, Łazarski G, Kovacik L, Gargas P, Nowakowska M, Jamróz D, Kepczynski M. Molecular Insight into Drug-Loading Capacity of PEG-PLGA Nanoparticles for Itraconazole. J Phys Chem B 2018; 122:7080-7090. [PMID: 29927603 DOI: 10.1021/acs.jpcb.8b03742] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanoparticles made of amphiphilic block copolymers comprising biodegradable core-forming blocks are very attractive for the preparation of drug-delivery systems with sustained release. Their therapeutic applications are, however, hindered by low values of the drug-loading content (DLC). The compatibility between the drug and the core-forming block of the copolymer is considered the most important factor affecting the DLC value. However, the molecular picture of the hydrophobic drug-copolymer interaction is still not fully recognized. Herein, we examined this complex issue using a range of experimental techniques in combination with atomistic molecular dynamics simulations. We performed an analysis of the interaction between itraconazole, a model hydrophobic drug, and a poly(ethylene glycol)-poly(lactide- co-glycolide) (PEG-PLGA) copolymer, a biodegradable copolymer commonly used for the preparation of drug-delivery systems. Our results clearly show that the limited capacity of the PEG-PLGA nanoparticles for the accumulation of hydrophobic drugs is due to the fact that the drug molecules are located only at the water-polymer interface, whereas the interior of the PLGA core remains empty. These findings can be useful in the rational design and development of amphiphilic copolymer-based drug-delivery systems.
Collapse
Affiliation(s)
- Natalia Wilkosz
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Grzegorz Łazarski
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Lubomir Kovacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University , Albertov 4 , 128 01 Prague , Czech Republic
| | - Patrycja Gargas
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Maria Nowakowska
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Dorota Jamróz
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| |
Collapse
|
17
|
Membrane Loaded Copper Oleate PEGylated Liposome Combined with Disulfiram for Improving Synergistic Antitumor Effect In Vivo. Pharm Res 2018; 35:147. [DOI: 10.1007/s11095-018-2414-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022]
|
18
|
Nabi A, Tasneem S, Jesudason CG, Lee VS, Zain SBM. Study of interaction between cationic surfactant (CTAB) and paracetamol by electrical conductivity, tensiometric and spectroscopic methods. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Liang X, Li X, Duan J, Chen Y, Wang X, Pang L, Kong D, Song B, Li C, Yang J. Nanoparticles with CD44 Targeting and ROS Triggering Properties as Effective in Vivo Antigen Delivery System. Mol Pharm 2018; 15:508-518. [DOI: 10.1021/acs.molpharmaceut.7b00890] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoyu Liang
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xuanling Li
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jianwei Duan
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Youlu Chen
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoli Wang
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Liyun Pang
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
- Key
Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Bing Song
- School of Dentistry, College of Biomedical & Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, U.K
| | - Chen Li
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jing Yang
- Tianjin
Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|