1
|
Mbese Z, Choene M, Morifi E, Nwamadi M, Adeyemi S, Kolawole Oyebamiji A, Adeyinka AS, George B, Aderibigbe BA. Hybrid Molecules Containing Methotrexate, Vitamin D, and Platinum Derivatives: Synthesis, Characterization, In Vitro Cytotoxicity, In Silico ADME Docking, Molecular Docking and Dynamics. Chem Biodivers 2024:e202400373. [PMID: 39278836 DOI: 10.1002/cbdv.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Designing hybrid-based drugs is one promising strategy for developing effective anticancer drugs that explore combination therapy to enhance treatment efficacy, overcome the development of drug resistance, and lower treatment duration. Bisphosphonates and Vitamin D are commonly administered drugs for the treatment of bone diseases and the prevention of bone metastases. Platinum-based and methotrexate are widely used anticancer drugs in clinics. However, their use is hampered by adverse side effects. Hybrid-based compounds containing either bisphosphonate, vitamin D, platinum-based, or methotrexate were synthesized and characterized using FTIR, 1H-,31P, 13C-NMR, and UHPLC-HRMS which confirmed their successful synthesis. The hydroxyapatite bone binding assay revealed a promising percentage binding affinity of the bisphosphonate hybrid compounds. In vitro cytotoxicity assays on MCF-7 and HT-29 cell lines revealed a promising cytotoxic effect of hybrid 19 at 50 and 100 μg/mL on HT-29 and hybrid 15 on MCF-7 at 100 μg/mL. Molecular docking and dynamics simulation analysis revealed a binding affinity of -9.70 kcal/mol for hybrid 15 against Human 3 alpha-hydroxysteroid dehydrogenase type 3, showing its capability to inhibit Human 3 alpha-hydroxysteroid dehydrogenase type 3. The Swiss ADME, ProTox-II, GUSAR (General Unrestricted Structure-Activity Relationships), and molecular docking and dynamics studies revealed that these compounds are promising anticancer compounds.
Collapse
Affiliation(s)
- Zintle Mbese
- Department of Chemistry, University of Fort Hare, Alice Campus, 5700, Alice, Eastern Cape, South Africa
| | - Mpho Choene
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, Auckland Park, 2006, Johannesburg, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of Witwatersrand, 2050, Johannesburg, South Africa
| | - M Nwamadi
- Department of Chemistry, University of Johannesburg, Auckland Park Campus, 2006, Johannesburg, South Africa
| | - Samson Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, 5700, Alice, Eastern Cape, South Africa
| |
Collapse
|
2
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
3
|
Gallego-Yerga L, de la Torre C, Sansone F, Casnati A, Mellet CO, García Fernández JM, Ceña V. Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydr Polym 2020; 252:117135. [PMID: 33183594 DOI: 10.1016/j.carbpol.2020.117135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Cyclodextrin-calixarene giant amphiphiles that can self-assemble into nanospheres or nanovesicles have the ability to encapsulate the anticancer hydrophobic drugs docetaxel, temozolomide and combretastatin A-4 with encapsulation efficiencies >80% and deliver them to tumoral cells, enhancing their therapeutic efficacy by 1-3 orders of magnitude. These amphiphiles were modified by inserting a disulfide bridge confering them redox responsiveness. Disassembly of the resulting nanocompounds and cargo release was favored by high glutathione levels mimicking those present in the tumor microenvironment. Anticancer drug-loaded nanoformulations inhibited prostate, breast, glioblastoma, colon or cervix cancer cell lines proliferation with IC50 values markedly below those observed for the free drugs. Cell-cycle analysis indicated a similar mechanism of action for drug-loaded nanocompounds and free drugs. The results strongly suggest that the cyclodextrin-calixarene heterodimer prototype is an excellent scaffold for nanoformulations aimed to deliver anticancer drugs with limited bioavailability due to low solubility to tumoral cells, markedly increasing their effectivity.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain; Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
| | - Cristina de la Torre
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parma, Italy.
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parma, Italy.
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain.
| | | | - Valentín Ceña
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
4
|
Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2020; 265:120404. [PMID: 32987273 DOI: 10.1016/j.biomaterials.2020.120404] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
A variety of targeted nanoparticles were developed for the diagnosis and therapy of orthotopic and metastatic bone tumors during the past decade. This critical review will focus on principles and methods in the design of these bone-targeted nanoparticles. Ligands including bisphosphonates, aspartic acid-rich peptides and synthetic polymers were grafted on nanoparticles such as PLGA nanoparticles, liposomes, dendrimers and inorganic nanoparticles for bone targeting. Besides, other ligands such as monoclonal antibodies, peptides and aptamers targeting biomarkers on tumor/bone cells were identified for targeted diagnosis and therapy. Examples of targeted nanoparticles for the early detection of bone metastatic tumors and the ablation of cancer via chemotherapy, photothermal therapy, gene therapy and combination therapy will be intensively reviewed. The development of multifunctional nanoparticles to break down the "vicious" cycle between tumor cell proliferation and bone resorption, and the challenges and perspectives in this area will be discussed.
Collapse
Affiliation(s)
- Xin Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Lin Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Xiaopan Cai
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Quan Huang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Yiyun Cheng
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Pham TT, Nguyen HT, Phung CD, Pathak S, Regmi S, Ha DH, Kim JO, Yong CS, Kim SK, Choi JE, Yook S, Park JB, Jeong JH. Targeted delivery of doxorubicin for the treatment of bone metastasis from breast cancer using alendronate-functionalized graphene oxide nanosheets. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Yang F, He CP, Diao PC, Hong KH, Rao JJ, Zhao PL. Discovery and optimization of 3,4,5-trimethoxyphenyl substituted triazolylthioacetamides as potent tubulin polymerization inhibitors. Bioorg Med Chem Lett 2018; 29:22-27. [PMID: 30448234 DOI: 10.1016/j.bmcl.2018.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Based on our previous research, three series of new triazolylthioacetamides possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities and inhibition of tubulin polymerization. The most promising compounds 8b and 8j demonstrated more significant antiproliferative activities against MCF-7, HeLa, and HT-29 cell lines than our lead compound 6. Moreover, analogues 8f, 8j, and 8o manifested more potent antiproliferative activities against HeLa cell line with IC50 values of 0.04, 0.05 and 0.16 μM, respectively, representing 100-, 82-, and 25-fold improvements of the activity compared to compound 6. Furthermore, the representative compound, 8j, was found to induce significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. Meanwhile, compound 8b exhibited the most potent tubulin polymerization inhibitory activity with an IC50 value of 5.9 μM, which was almost as active as that of CA-4 (IC50 = 4.2 μM). Additionally, molecular docking analysis suggested that 8b formed stable interactions in the colchicine-binding site of tubulin.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Cai-Ping He
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Peng-Cheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis 55414, United States
| | - Jin-Jun Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
Iwasaki Y, Yokota A, Otaka A, Inoue N, Yamaguchi A, Yoshitomi T, Yoshimoto K, Neo M. Bone-targeting poly(ethylene sodium phosphate). Biomater Sci 2018; 6:91-95. [PMID: 29184942 DOI: 10.1039/c7bm00930e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poly(ethylene sodium phosphate) (PEP·Na) showed excellent cytocompatibility and in vivo bone affinity. Moreover, PEP·Na did not interact with thrombin, which is a coagulation-related protein. Because immobilization of therapeutic agents and imaging probes on PEP·Na is easily performed, PEP·Na is a promising polymer for bone-targeted therapies.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Oruç Z, Kaplan MA, Arslan Ç. An update on the currently available and future chemotherapy for treating bone metastases in breast cancer patients. Expert Opin Pharmacother 2018; 19:1305-1316. [PMID: 30129373 DOI: 10.1080/14656566.2018.1504922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Bone metastases in breast cancer patients are a common clinical problem. Many factors influence the treatment decision, including tumor characteristics, previous treatment and tumor burden in the treatment of metastatic breast cancer. AREAS COVERED This present review summarizes the new treatment strategies and the chemotherapeutic agents currently available in the management of metastatic breast cancer with bone metastases. EXPERT OPINION Patients with bone metastases more often have hormone receptor-positive tumours. Although new treatment agents for metastatic breast cancer have been investigated, endocrine therapy is still considered as the treatment of choice for patients with bone metastases although chemotherapy still has an important place. In recent years, new chemotherapeutic agents such as etirinotecan and nab-paclitaxel have been established though there are few studies that have looked at particular types of metastases. In the last decade, therapies for bone metastasis resistant to endocrine therapy have predominantly focused on radiotherapy, surgical resection, chemotherapy, bone-targeting radiopharmaceuticals and targeted therapeutics. New targeted agents include: Src inhibitors, cathepsin K inhibitors, CXCR4 inhibitors, TGF-B blockade and integrin antagonists while drug delivery systems for chemotherapy have also been developed. These new treatment options could be future treatment options for bone metastatic disease if early promising results are confirmed by clinical trials.
Collapse
Affiliation(s)
- Zeynep Oruç
- a Department of Medical Oncology , Mersin City Hospital , Mersin , Turkey
| | - Muhammet Ali Kaplan
- b Department of Medical Oncology , Dicle University Faculty of Medicine , Diyarbakır , Turkey
| | - Çağatay Arslan
- c Department of Medical Oncology , Medical Park Hospital , Izmir , Turkey.,d Faculty of Medicine , Bahcesehir University , Istanbul , Turkey
| |
Collapse
|
10
|
Xie Z, Liu G, Tang P, Sun X, Chen S, Qin A, Zhu P, Zhang J, Fan S. Bone-targeted methotrexate-alendronate conjugate inhibits osteoclastogenesis in vitro and prevents bone loss and inflammation of collagen-induced arthritis in vivo. Drug Deliv 2018; 25:187-197. [PMID: 29303005 PMCID: PMC6058523 DOI: 10.1080/10717544.2017.1422295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA), a disease that causes joint destruction and bone erosion, is related to osteoclast activity. RA is generally treated with methotrexate (MTX). In this study, a MTX–Alendronate (ALN) conjugate was synthesized and characterized. The conjugate dramatically inhibited osteoclast formation and bone resorption compared with MTX and ALN used alone or in combination. Due to the characteristics of ALN, the MTX–ALN conjugate can adhere to the exposed bone surface and enhance drug accumulation in the pathological region for targeted therapy against osteoclastogenesis. Additionally, MTX was rapidly released in the presence of lysozyme under mildly acidic conditions, similar to inflammatory tissue and osteoclast-surviving conditions, which contributes to inflammatory inhibition; this was confirmed by the presence of pro-inflammatory cytokines. Our study highlights the use of the MTX–ALN conjugate as a potential therapeutic approach for RA by targeting osteoclastogenesis.
Collapse
Affiliation(s)
- Zi'ang Xie
- a Department of Orthopaedics , Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Biotherapy of Zhejiang Province , Hangzhou , China
| | - Guanxiong Liu
- c School of Chemistry and Chemical Engineering , Yangzhou University , Jiangsu , China
| | - Pan Tang
- a Department of Orthopaedics , Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Biotherapy of Zhejiang Province , Hangzhou , China
| | - Xuewu Sun
- a Department of Orthopaedics , Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , China.,b Key Laboratory of Biotherapy of Zhejiang Province , Hangzhou , China
| | - Shuai Chen
- a Department of Orthopaedics , Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , China
| | - An Qin
- d Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , PR China
| | - Peizhi Zhu
- c School of Chemistry and Chemical Engineering , Yangzhou University , Jiangsu , China
| | - Jianfeng Zhang
- a Department of Orthopaedics , Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , China
| | - Shunwu Fan
- a Department of Orthopaedics , Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , China
| |
Collapse
|
11
|
Ke X, Lin W, Li X, Wang H, Xiao X, Guo Z. Synergistic dual-modified liposome improves targeting and therapeutic efficacy of bone metastasis from breast cancer. Drug Deliv 2017; 24:1680-1689. [PMID: 29092646 PMCID: PMC8241154 DOI: 10.1080/10717544.2017.1396384] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 11/11/2022] Open
Abstract
Breast cancer frequently metastasizes to bone, where it leads to poor clinical prognosis. Due to the peculiarity of the bone microstructure, the uptake of drugs often happens at non-targeted sites, which produces a similar cytotoxicity in both cancerous and healthy cells. In this study, a rational strategy was implemented to take advantage of a combination of both an octapeptide with eight repeating sequences of aspartate (Asp8) and folate to create a more selective and efficient drug delivery system to target cancer cells in bone tissue. Asp8 and folate were conjugated to the distal ends of DSPE-PEG2000-maleimide and DSPE-PEG2000-amine to create DSPE-PEG2000-Asp8 and DSPE-PEG2000-Folate, respectively, which were incorporated onto the surface of a doxorubicin (DOX)-loaded liposomes (A/F-LS). Asp8, similar to the hydroxyapatite-binding domains of osteopontin and osteocalcin, has been used as bone-targeting moieties for exclusive delivery of drugs to bone. The folate moiety binds selectively to folate receptor-positive tumors. The dual-targeting effects were evaluated by both in vitro and in vivo experiments. By taking advantages of dual-targeting drug delivery, the dual-modified liposomal drug system could relieve pain and improve survival. Inspired by its enhanced therapeutic efficacy and low toxicity, DOX-loaded A/F-LS could serve as an effective drug system for targeted therapy of bone metastases.
Collapse
Affiliation(s)
- Xianzhu Ke
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Orthopedics, Hubei Cancer Hospital, Wuhan, China
| | - Wen Lin
- Department of Clinical Laboratory, Huangshi Love & Health Hospital of Hubei Province, Huangshi, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hailiang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|