1
|
Lai HW, Tani Y, Sukatta U, Rugthaworn P, Thepyos A, Yamamoto S, Fukuhara H, Inoue K, Yuasa H, Nakamura H, Ogura SI. Mangostin enhances efficacy of aminolevulinic acid-photodynamic therapy against cancer through inhibition of ABCG2 activity. Photodiagnosis Photodyn Ther 2023; 44:103798. [PMID: 37696317 DOI: 10.1016/j.pdpdt.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Aminolevulinic acid-photodynamic therapy (ALA-PDT) is gaining attention as a potential method for treating select cancers due to its high specificity and low side effect feature. ALA enters cancer cells and accumulate as protoporphyrin IX (PpIX), which will then trigger phototoxicity following light irradiation. However, it is reported that some cancer cells have reduced efficacy of ALA-PDT due to high expression of ABCG2, a transporter involved in the PpIX efflux. In this study, we evaluated the effect of mangostin, a natural compound containing anti-tumor property, on the efficacy of ALA-PDT against cancer and the mechanism involved. METHODS We utilized TMK1 gastric cancer cell line, which has high ABCG2 expression, to evaluate the PpIX accumulation and phototoxicity exerted by ALA and mangostin co-addition. RESULTS We found that co-addition of ALA and mangostin significantly increase the phototoxicity and PpIX accumulation in TMK1 cells. We also investigated the effect of mangostin on porphyrin-heme pathway enzymes and ABCG2 and found that the addition of mangostin reduce the activity of ABCG2, reducing PpIX efflux. CONCLUSION These findings suggest that mangostin enhances the efficacy of ALA-PDT in cancer through inhibition of ABCG2 activity.
Collapse
Affiliation(s)
- Hung Wei Lai
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Yukitaka Tani
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan
| | - Udomlak Sukatta
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900 Thailand.
| | - Prapassorn Rugthaworn
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900 Thailand
| | - Asada Thepyos
- Quality Plus Biomedtech Co., Ltd. Headquarter: fl. 25, Jasmine International Tower, Chaeng Wattana road, Pak Kret district, Nonthaburi 11120 Thailand
| | - Shinkuro Yamamoto
- Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan; Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan; Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan.
| |
Collapse
|
2
|
Liao YJ, Lee CY, Twu YC, Suk FM, Lai TC, Chang YC, Lai YC, Yuan JW, Jhuang HM, Jian HR, Huang LC, Chen KP, Hsu MH. Isolation and Biological Evaluation of Alfa-Mangostin as Potential Therapeutic Agents against Liver Fibrosis. Bioengineering (Basel) 2023; 10:1075. [PMID: 37760177 PMCID: PMC10526009 DOI: 10.3390/bioengineering10091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The increased proliferation and activation of hepatic stellate cells (HSCs) are associated with liver fibrosis development. To date, there are no FDA-approved drugs for the treatment of liver cirrhosis. Augmentation of HSCs apoptosis is one of the resolutions for liver fibrosis. In this study, we extracted α-mangostin (1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9H-xanthen-9-one) from the fruit waste components of mangosteen pericarp. The isolated α-mangostin structure was determined and characterized with nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) and compared with those known compounds. The intracellular signaling pathway activities of α-mangostin on Transforming growth factors-beta 1 (TGF-β1) or Platelet-derived growth factor subunit B (PDGF-BB) induced HSCs activation and were analyzed via Western blot and Real-time Quantitative Polymerase Chain Reaction (Q-PCR). α-Mangostin-induced mitochondrial dysfunction and apoptosis in HSCs were measured by seahorse assay and caspase-dependent cleavage. The in vivo anti-fibrotic effect of α-mangostin was assessed by carbon tetrachloride (CCl4) treatment mouse model. The data showed that α-mangostin treatment inhibited TGF-β1-induced Smad2/3 phosphorylation and alpha-smooth muscle actin (α-SMA) expression in HSCs in a dose-dependent manner. Regarding the PDGF-BB-induced HSCs proliferation signaling pathways, α-mangostin pretreatment suppressed the phosphorylation of extracellular-signal-regulated kinase (ERK) and p38. The activation of caspase-dependent apoptosis and dysfunction of mitochondrial respiration (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were observed in α-mangostin-treated HSCs. The CCl4-induced liver fibrosis mouse model showed that the administration of α-mangostin significantly decreased the expression of the fibrosis markers (α-SMA, collagen-a2 (col1a2), desmin and matrix metalloproteinase-2 (MMP-2)) as well as attenuated hepatic collagen deposition and liver damage. In conclusion, this study demonstrates that α-mangostin attenuates the progression of liver fibrosis through inhibiting the proliferation of HSCs and triggering apoptosis signals. Thus, α-mangostin may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Chieh Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Ya-Ching Chang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Yi-Cheng Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Jing-Wei Yuan
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hong-Ming Jhuang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Huei-Ruei Jian
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Li-Chia Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Kuang-Po Chen
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
3
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
4
|
Nayak D, Paul S, Das C, Bhal S, Kundu CN. Quinacrine and Curcumin in combination decreased the breast cancer angiogenesis by modulating ABCG2 via VEGF A. J Cell Commun Signal 2023; 17:609-626. [PMID: 36326988 PMCID: PMC10409692 DOI: 10.1007/s12079-022-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) cause drug resistance in cancer due to its extensive drug efflux, DNA repair and self-renewal capability. ATP binding cassette subfamily G member 2 (ABCG2) efflux pump afford protection to CSCs in tumors, shielding them from the adverse effects of chemotherapy. Although the role of ABCG2 in cancer progression, invasiveness, recurrence are known but its role in metastasis and angiogenesis are not clear. Here, using in vitro (CSCs enriched side population [SP] cells), ex vivo (patient derived primary cells), in ovo (fertilized egg embryo) and in vivo (patient derived primary tissue mediated xenograft (PDX)) system, we have systematically studied the role of ABCG2 in angiogenesis and the regulation of the process by Curcumin (Cur) and Quinacrine (QC). Cur + QC inhibited the proliferation, invasion, migration and expression of representative markers of metastasis and angiogenesis. Following hypoxia, ABCG2 enriched cells released angiogenic factor vascular endothelial growth factor A (VEGF A) and induced the angiogenesis via PI3K-Akt-eNOS cascade. Cur + QC inhibited the ABCG2 expression and thus reduced the angiogenesis. Interestingly, overexpression of ABCG2 in SP cells and incubation of purified ABCG2 protein in media induced the angiogenesis but knockdown of ABCG2 decreased the vascularization. In agreement with in vitro results, ex vivo data showed similar phenomena. An induction of vascularization was noticed in PDX mice but reduction of vascularization was also observed after treatment of Cur + QC. Thus, data suggested that in hypoxia, ABCG2 enhances the production of angiogenesis factor VEGF A which in turn induced angiogenesis and Cur + QC inhibited the process by inhibiting ABCG2 in breast cancer.
Collapse
Affiliation(s)
- Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subhasmita Bhal
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
6
|
Li Y, Ding B, Liu J, Li X, He C, Wang J, Liu L. Drug resistance of hepatoma cells induced by ATP‑binding cassette transporter G2 by reducing intracellular drug concentration. Exp Ther Med 2023; 25:124. [PMID: 36845945 PMCID: PMC9947739 DOI: 10.3892/etm.2023.11823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
The side effects and drug resistance during chemotherapy seriously affect the outcome of and may lead to the failure of chemotherapy for patients with hepatoma. The aim of the present study was to investigate the association between the expression of ATP-binding cassette transporter G2 (ABCG2) in hepatoma cells and the drug resistance of hepatoma. An MTT assay was used to determine the half-maximal inhibitory concentration (IC50) of Adriamycin (ADM) in hepatoma HepG2 cells after treatment with ADM for 24 h. An ADM-resistant hepatoma cell subline, HepG2/ADM, was generated from the HepG2 hepatoma cell line through a stepwise selection with ADM doses from 0.01 to 0.1 µg/ml. The HepG2/ABCG2 cell line, an ABCG2-overexpressing hepatoma cell line, was established by transfecting the ABCG2 gene into HepG2 cells. The MTT assay was then used to detect the IC50 of ADM in HepG2/ADM and HepG2/ABCG2 cells after treatment with ADM for 24 h and the resistance index was calculated. The apoptosis, cell cycle and ABCG2 protein expression levels in HepG2/ADM, HepG2/ABCG2 cells, HepG2/PCDNA3.1 and their parental HepG2 cells were detected by flow cytometry. In addition, flow cytometry was used to detect the efflux effect of HepG2/ADM and HepG2/ABCG2 cells after ADM treatment. ABCG2 mRNA expression in cells was detected by reverse transcription-quantitative PCR. After 3 months of ADM treatment, HepG2/ADM cells grew stably in the cell culture medium containing 0.1 µg/ml ADM and the cells were named HepG2/ADM cells. ABCG2 was overexpressed in HepG2/ABCG2 cells. The IC50 of ADM in HepG2, HepG2/PCDNA3.1, HepG2/ADM and HepG2/ABCG2 cells was 0.72±0.03, 0.74±0.01, 11.17±0.59 and 12.75±0.47 µg/ml, respectively. The cell apoptotic rate of HepG2/ADM and HepG2/ABCG2 cells was not significantly different compared with that of HepG2 and HepG2/PCDNA3.1 cells (P>0.05), but the G0/G1 phase population of the cell cycle decreased and the proliferation index increased significantly (P<0.05). The expression levels of ABCG2 gene and protein in HepG2/ADM and HepG2/ABCG2 cells were significantly higher than those in HepG2 and HepG2/PCDNA3.1 cells (P<0.01), but there was no significant difference between HepG2 and HepG2/PCDNA3.1 cells (P>0.05). The ADM efflux effect of HepG2/ADM and HepG2/ABCG2 cells was significantly higher than that of parental HepG2 and HepG2/PCDNA3.1 cells (P<0.05). Therefore, the present study demonstrated that ABCG2 expression is highly increased in drug-resistant hepatoma cells and that high expression of ABCG2 is involved in the drug resistance of hepatoma by reducing the intracellular drug concentration.
Collapse
Affiliation(s)
- Yuekao Li
- Department of Computed Tomography, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Boyue Ding
- Department of Radiotherapy, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianghui Liu
- Department of Flow Cytometry, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xing Li
- Department of Flow Cytometry, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Caiyi He
- Department of Flow Cytometry, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Wang
- Department of Flow Cytometry, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Department of Flow Cytometry, Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China,Correspondence to: Professor Liang Liu, Department of Flow Cytometry, Tumor Institute, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
7
|
Recent Update on Active Biological Molecules in Generating the Anticancerous Therapeutic Potential of Garcinia mangostana. Appl Biochem Biotechnol 2022; 194:4724-4744. [DOI: 10.1007/s12010-022-04031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
|
8
|
Novel Epoxides of Soloxolone Methyl: An Effect of the Formation of Oxirane Ring and Stereoisomerism on Cytotoxic Profile, Anti-Metastatic and Anti-Inflammatory Activities In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23116214. [PMID: 35682893 PMCID: PMC9181525 DOI: 10.3390/ijms23116214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
It is known that epoxide-bearing compounds display pronounced pharmacological activities, and the epoxidation of natural metabolites can be a promising strategy to improve their bioactivity. Here, we report the design, synthesis and evaluation of biological properties of αO-SM and βO-SM, novel epoxides of soloxolone methyl (SM), a cyanoenone-bearing derivative of 18βH-glycyrrhetinic acid. We demonstrated that the replacement of a double-bound within the cyanoenone pharmacophore group of SM with α- and β-epoxide moieties did not abrogate the high antitumor and anti-inflammatory potentials of the triterpenoid. It was found that novel SM epoxides induced the death of tumor cells at low micromolar concentrations (IC50(24h) = 0.7–4.1 µM) via the induction of mitochondrial-mediated apoptosis, reinforced intracellular accumulation of doxorubicin in B16 melanoma cells, probably by direct interaction with key drug efflux pumps (P-glycoprotein, MRP1, MXR1), and the suppressed pro-metastatic phenotype of B16 cells, effectively inhibiting their metastasis in a murine model. Moreover, αO-SM and βO-SM hampered macrophage functionality in vitro (motility, NO production) and significantly suppressed carrageenan-induced peritonitis in vivo. Furthermore, the effect of the stereoisomerism of SM epoxides on the mentioned bioactivities and toxic profiles of these compounds in vivo were evaluated. Considering the comparable antitumor and anti-inflammatory effects of SM epoxides with SM and reference drugs (dacarbazine, dexamethasone), αO-SM and βO-SM can be considered novel promising antitumor and anti-inflammatory drug candidates.
Collapse
|
9
|
Du B, Zheng M, Ma H, Huang J, Jiao Q, Bai Y, Zhao M, Zhou J. Nanozyme-natural enzymes cascade catalyze cholesterol consumption and reverse cancer multidrug resistance. J Nanobiotechnology 2022; 20:209. [PMID: 35501796 PMCID: PMC9063293 DOI: 10.1186/s12951-022-01406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance is still a major obstacle to cancer treatment. The most studies are to inhibit the activity of the drug transporter P-glycoprotein (P-gp), but the effect is not ideal. Herein, a nanosystem was built based on cascade catalytic consumption of cholesterol. Cholesterol oxidase (natural enzyme, COD) was immobilized on the carrier (NH2-MIL-88B, MOF) through amide reaction, COD catalyzed the consumption of cholesterol, the reaction product H2O2 was further produced by the MOF with its peroxidase-like activity to produce hydroxyl radicals (•OH) with killing effect. Due to the high expression of CD44 receptor on the surface of tumor cells, we encapsulated chondroitin sulfate gel shell (CS-shell) with CD44 targeting and apoptosis promoting effect on the surface of DOX@MOF-COD nanoparticles, which can accurately and efficiently deliver the drugs to the tumor site and improve the effect of reversing drug resistance. Taking drug-resistant cell membrane as "breakthrough", this paper will provide a new idea for reversing multidrug resistance of tumor.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, 100 Science Road, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Mei Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Huizhen Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Jingshu Huang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Jiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Yimeng Bai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Mengmeng Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, 100 Science Road, Zhengzhou, 450001, Henan Province, People's Republic of China.
| |
Collapse
|
10
|
α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021; 26:molecules26175119. [PMID: 34500560 PMCID: PMC8434247 DOI: 10.3390/molecules26175119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG’s cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
Collapse
|
11
|
Yamamoto S, Fukuhara H, Seki H, Kawada C, Nakayama T, Karashima T, Ogura SI, Inoue K. Predictors of therapeutic efficacy of 5-aminolevulinic acid-based photodynamic therapy in human prostate cancer. Photodiagnosis Photodyn Ther 2021; 35:102452. [PMID: 34303032 DOI: 10.1016/j.pdpdt.2021.102452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive cancer therapy. However, its therapeutic efficacy for prostate cancer is not yet fully understood. In this study, the predictors of therapeutic efficacy of 5-aminolevulinic acid-based PDT (ALA-PDT) on prostate cancer cells are investigated. MATERIALS AND METHODS The human prostate cancer cell lines, PC-3, 22Rv1, DU145, and LNCap were used to investigate the effects of ALA-PDT on protoporphyrin IX (PpIX) intracellular accumulation, which was measured by flow cytometry. The cytotoxicity of ALA-PDT was evaluated by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The levels of porphyrin metabolism-related enzyme and transporter mRNA were comprehensively evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blot. A xenograft model was created using PC-3 and 22Rv1, and then, pathological analysis was performed to determine the therapeutic effect of ALA-PDT RESULTS: PC-3 and LNCap cells showed high accumulation of PpIX and high sensitivity to ALA-PDT, while 22Rv1 and DU145 showed low accumulation of PpIX and low sensitivity to ALA-PDT. ALA-PDT-induced cytotoxicity correlated negatively with PpIX accumulation. The in vitro assays identified the ATP-binding cassette transporter subfamily G2 (ABCG2) transporter dimer as a predictor of treatment response. In vivo immunohistochemical staining of ABCG2 transporter showed low expression in PC-3 cells and high expression in 22Rv1 cells, and ALA-PDT-induced tumor tissue degeneration was greater in PC-3 cells than in 22Rv1 cells. CONCLUSION The ABCG2 transporter is a useful predictor of the therapeutic effect of ALA-PDT on human prostate cancer cells.
Collapse
Affiliation(s)
- Shinkuro Yamamoto
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Hitomi Seki
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Chiaki Kawada
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Taku Nakayama
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Shun-Ichiro Ogura
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| |
Collapse
|
12
|
Li K, Wu L, Chen Y, Li Y, Wang Q, Li M, Hao K, Zhang W, Jiang S, Wang Z. Cytotoxic and Antiproliferative Effects of β-Mangostin on Rat C6 Glioma Cells Depend on Oxidative Stress Induction via PI3K/AKT/mTOR Pathway Inhibition. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5315-5324. [PMID: 33293793 PMCID: PMC7718963 DOI: 10.2147/dddt.s278414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Background Glioma is the most common malignant tumor of the nervous system, which accounts for more than 45% of central nervous system tumors and seriously threatens our health. Because of high mortality rate, limitations, and many complications of traditional treatment methods, new treatment methods are urgently needed. β-Mangostin is a natural compound derived from the fruit of Garcinia mangostana L. and it has anticancer activity in several types of cancer cells. However, the antitumor effect of β-mangostin in glioma has not been clarified. Hence, this study aimed to investigate its therapeutic effects on gliomas. Materials and Methods To study the effect of β-mangostin on glioma cells, cell viability assay, reactive oxygen species production, cell cycle, apoptosis, and mitochondrial membrane potential were evaluated in the C6 cell line in vitro. Immunofluorescence and Western blotting were used to analyze protein expression and phosphorylation to study its mechanism of action. A subcutaneous xenograft model was used to investigate the effect of β-mangostin on tumorigenesis in vivo. Results We found that β-mangostin can inhibit glioma cell growth and induce oxidative damage in vitro. In addition, it reduces the phosphorylated form levels of PI3K, AKT and mTOR. Furthermore, the phosphorylated form levels of PI3K, AKT and mTOR were increased after the PI3K inhibitor was added. In vivo experiments showed that β-mangostin can inhibit tumor growth as shown by its reduced size and weight. Conclusion This study suggests that β-mangostin can inhibit cell proliferation and induce oxidative damage in cells. It is the first study to demonstrate that β-mangostin induces oxidative damage in glioma cells by inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Kaiqiang Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325027, People's Republic of China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Lingling Wu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Yili Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yuanyuan Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Qianni Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Min Li
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Wei Zhang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Shanshan Jiang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Zhen Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325027, People's Republic of China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| |
Collapse
|
13
|
Doxorubicin as a fluorescent reporter identifies novel MRP1 (ABCC1) inhibitors missed by calcein-based high content screening of anticancer agents. Biomed Pharmacother 2019; 118:109289. [PMID: 31401398 DOI: 10.1016/j.biopha.2019.109289] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) actively transports a variety of drugs, toxic molecules and important physiological substrates across the plasma membrane. It can confer broad-spectrum multidrug resistance and can decrease the bioavailability of many important drugs. Substrates of MRP1 include anti-cancer agents, antibiotics, antivirals, antidepressants and anti-inflammatory drugs. Using calcein as a fluorescent reporter in a high content uptake assay, we recently reported the identification of 12 MRP1 inhibitors after screening an anti-cancer library of 386 compounds. Here, we describe the development of a new high content imaging-based uptake assay using doxorubicin as a fluorescent reporter. Screening the same anti-cancer library of 386 compounds, the new assay identified a total of 28 MRP1 inhibitors including 16 inhibitors that have not been previously reported as inhibitors of MRP1. Inhibition of MRP1 activity was confirmed using flow cytometry and confocal microscopy-based transport assays. Six drugs (afatinib, celecoxib, doramapimod, mifepristone, MK-2206 and rosiglitazone) were evaluated for their ability to reverse resistance of MRP1-overexpressing H69AR lung cancer cells against vincristine, doxorubicin and etoposide. Mifepristone and doramapimod were most effective in reversal of resistance against vincristine while mifepristone and rosiglitazone were most successful in resensitizing H69AR cells against doxorubicin. Furthermore, resistance towards etoposide was completely reversed in the presence of celecoxib or doramapimod. Selected drugs were also evaluated for resistance reversal in HEK cells that overexpress P-glycoprotein or breast cancer resistance protein. Our results indicate mifepristone and doramapimod as pan inhibitors of these three drug transporters while celecoxib exhibited selective MRP1 inhibition. Together, our findings signify the importance of MRP1 in drug discovery and demonstrate the effectiveness and value of doxorubicin-based high content screening approach. Anti-cancer agents that exhibit MRP1 inhibition may be used to reverse multidrug resistance or to improve the efficacy and reduce the toxicity of various cancer chemotherapies. On the other hand, anti-cancer drugs that did not interact with MRP1 carry a low risk for developing MRP1-mediated resistance.
Collapse
|
14
|
Ren Y, Carcache de Blanco EJ, Fuchs JR, Soejarto DD, Burdette JE, Swanson SM, Kinghorn AD. Potential Anticancer Agents Characterized from Selected Tropical Plants. JOURNAL OF NATURAL PRODUCTS 2019; 82:657-679. [PMID: 30830783 PMCID: PMC6441492 DOI: 10.1021/acs.jnatprod.9b00018] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants are well known for their value in affording clinically useful anticancer agents, with such compounds acting against cancer cells by a range of mechanisms of action. There remains a strong interest in the discovery and development of plant secondary metabolites as additional cancer chemotherapeutic lead compounds. In the present review, progress on the discovery of plant-derived compounds of the biflavonoid, lignan, sesquiterpene, steroid, and xanthone structural types is presented. Several potential anticancer leads of these types have been characterized from tropical plants collected in three countries as part of our ongoing collaborative multi-institutional project. Preliminary structure-activity relationships and work on in vivo testing and cellular mechanisms of action are also discussed. In addition, the relevant work reported by other groups on the same compound classes is included herein.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Djaja D. Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Science and Education, Field Museum of Natural History, Chicago, IL 60605, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
15
|
Qiu K, Liu C, Shi Y, Yu X, Chen G, Wu J, Li G, Lv L. An LC-MS/MS Method for Synchronous Determination of Paclitaxel and Curcumin: Development, Validation, and Application to a Pharmacokinetic Study. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180222140839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background:
A chromatography tandem mass spectrometry method was first established and
validated for the synchronous determination of curcumin(CUR) and paclitaxel (PTX) in this study.
</P><P>
Objective: An LC-MS/MS Method for Determination of Paclitaxel and Curcumin.
Methods:
The analytes were extracted with methanol, and docetaxel was used as the internal standard
(IS). The analytes and the IS were separated on a C18 (4.6 mm × 50 mm, 3.5 µm) column with a mobile
phase of 0.1% formic acid solution and methanol (80:20, v/v). The flow velocity of the mobile phase
was 0.5 mL/min. And then, the method was applied to study the pharmacokinetic behavior of CUR and
PTX in rats.
Results:
The calibration curves were linear within the concentration ranges of 2–1000 ng/mL for PTX
and 5–500 ng/mL for CUR, the mean extraction recoveries and matrix effects of PTX, CUR, and the IS
were within an acceptable range. The apparent volume of distribution of PTX was different between the
group of administration of PTX and the group of co-administration with CUR and PTX.
Conclusion:
A sensitive and simple liquid chromatography-tandem mass spectrometry method was
established and validated for the synchronous determination of PTX and CUR in rat plasma, CUR increased
the apparent volume of distribution of PTX when CUR and PTX were co-administered.
Collapse
Affiliation(s)
- Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Chunxia Liu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Xiaoxia Yu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guanghui Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
16
|
Toyoda Y, Takada T, Suzuki H. Inhibitors of Human ABCG2: From Technical Background to Recent Updates With Clinical Implications. Front Pharmacol 2019; 10:208. [PMID: 30890942 PMCID: PMC6411714 DOI: 10.3389/fphar.2019.00208] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
The ATP-binding cassette transporter G2 (ABCG2; also known as breast cancer resistance protein, BCRP) has been suggested to be involved in clinical multidrug resistance (MDR) in cancer like other ABC transporters such as ABCB1 (P-glycoprotein). As an efflux pump exhibiting a broad substrate specificity localized on cellular plasma membrane, ABCG2 excretes a variety of endogenous and exogenous substrates including chemotherapeutic agents, such as mitoxantrone and several tyrosine kinase inhibitors. Moreover, in the normal tissues, ABCG2 is expressed on the apical membranes and plays a pivotal role in tissue protection against various xenobiotics. For this reason, ABCG2 is recognized to be an important determinant of the pharmacokinetic characteristics of its substrate drugs. Although the clinical relevance of reversing the ABCG2-mediated MDR has been inconclusive, an appropriate modulation of ABCG2 function during chemotherapy should logically enhance the efficacy of anti-cancer agents by overcoming the MDR phenotype and/or improving their pharmacokinetics. To confirm this possibility, considerable efforts have been devoted to developing ABCG2 inhibitors, although there is no clinically available substance for this purpose. As a clue for addressing this issue, this mini-review provides integrated information covering the technical backgrounds necessary to evaluate the ABCG2 inhibitory effects on the target compounds and a current update on the ABCG2 inhibitors. This essentially includes our recent findings, as we serendipitously identified febuxostat, a well-used agent for hyperuricemia as a strong ABCG2 inhibitor, that possesses some promising potentials. We hope that an overview described here will add value to further studies involving in the multidrug transporters.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Aizat WM, Jamil IN, Ahmad-Hashim FH, Noor NM. Recent updates on metabolite composition and medicinal benefits of mangosteen plant. PeerJ 2019; 7:e6324. [PMID: 30755827 PMCID: PMC6368837 DOI: 10.7717/peerj.6324] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mangosteen (Garcinia mangostana L.) fruit has a unique sweet-sour taste and is rich in beneficial compounds such as xanthones. Mangosteen originally been used in various folk medicines to treat diarrhea, wounds, and fever. More recently, it had been used as a major component in health supplement products for weight loss and for promoting general health. This is perhaps due to its known medicinal benefits, including as anti-oxidant and anti-inflammation. Interestingly, publications related to mangosteen have surged in recent years, suggesting its popularity and usefulness in research laboratories. However, there are still no updated reviews (up to 2018) in this booming research area, particularly on its metabolite composition and medicinal benefits. METHOD In this review, we have covered recent articles within the years of 2016 to 2018 which focus on several aspects including the latest findings on the compound composition of mangosteen fruit as well as its medicinal usages. RESULT Mangosteen has been vastly used in medicinal areas including in anti-cancer, anti-microbial, and anti-diabetes treatments. Furthermore, we have also described the benefits of mangosteen extract in protecting various human organs such as liver, skin, joint, eye, neuron, bowel, and cardiovascular tissues against disorders and diseases. CONCLUSION All in all, this review describes the numerous manipulations of mangosteen extracted compounds in medicinal areas and highlights the current trend of its research. This will be important for future directed research and may allow researchers to tackle the next big challenge in mangosteen study: drug development and human applications.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Ili Nadhirah Jamil
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Normah Mohd Noor
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
18
|
Li Y, Xi Z, Chen X, Cai S, Liang C, Wang Z, Li Y, Tan H, Lao Y, Xu H. Natural compound Oblongifolin C confers gemcitabine resistance in pancreatic cancer by downregulating Src/MAPK/ERK pathways. Cell Death Dis 2018; 9:538. [PMID: 29749405 PMCID: PMC5970202 DOI: 10.1038/s41419-018-0574-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022]
Abstract
Gemcitabine (GEM)-induced drug resistance is the major reason for the failure of chemotherapy in pancreatic cancer (PC). In this study, we found that Oblongifolin C (OC) efficiently inhibited PC cell proliferation by inducing G0/G1 arrest and apoptosis. Also, our mechanism study demonstrated that OC re-sensitized the GEM-resistant PC cells through the ubiquitin-proteasome-dependent degradation of Src, and then downregulating the MAPK pathway. Knockdown of Src plus OC resulted in a greater inhibitory effect in GEM-resistant PC cells. In contrast, Src overexpression reversed OC-mediated chemosensitization, thereby implicating Src in the action of OC. Moreover, our in vivo study showed that OC suppressed the tumor growth via the downregulation of Src, and enhanced the chemosensitivity of GEM-resistant PC to GEM. Overall, our results have revealed that OC is applicable as a promising agent for overcoming GEM-resistant PC, especially with aberrant Src expression.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Xiaoqiong Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Shuangfan Cai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Chen Liang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingyi Li
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China.
| |
Collapse
|
19
|
Phuong NTM, Van Quang N, Mai TT, Anh NV, Kuhakarn C, Reutrakul V, Bolhuis A. Antibiofilm activity of α-mangostin extracted from Garcinia mangostana L. against Staphylococcus aureus. ASIAN PAC J TROP MED 2017; 10:1154-1160. [PMID: 29268971 DOI: 10.1016/j.apjtm.2017.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/27/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To isolate α-mangostin (AMG) from the peels of mangosteen (Garcinia mangostana L.), grown in Vietnam, and to investigate antibiofilm activity of this compound against three Staphylococcus aureus (S. aureus) strains, one of which was methicillin-resistant S. aureus (MRSA) and the other two strains were methicillin-sensitive S. aureus (MSSA). METHODS AMG in n-hexane fraction was isolated on a silica gel column and chemically analyzed by HPLC and NMR. The antibiofilm activity of this compound was investigated by using a 96-well plate model for the formation of biofilms. Biofilm biomass was quantified using crystal violet. The viability of cells was observed under confocal microscopy using LIVE/DEAD BacLight stains. Biofilm composition was determined using specific chemical and enzyme tests for polysaccharide, protein and DNA. Membrane-damaging activity was assayed by measuring the hemolysis of human red blood cells in presence of AMG. RESULTS The results indicated that the isolated AMG, with a purity that exceeded 98%, had minimal inhibitory concentrations in the range of 4.6-9.2 μmol/L for the three strains tested. Interestingly, the MSSA strains were more sensitive to AMG than the MRSA strain. Minimal bactericidal concentrations were 2-fold higher than the minimal inhibitory concentration values for the three strains, indicating that AMG was a bactericidal compound. AMG also prevented biofilm formation effectively, albeit that again the MRSA strain was the most resistant. Interestingly, biofilms of the MRSA strain contained protein as a main component of the extracellular matrix, whereas this was polysaccharide in the MSSA strains. This might relate to the resistance of the MRSA 252 strain to AMG. Assays using human red blood cells indicated that AMG caused significant membrane damage with 50% of cell lysis occurred at concentration of about 36 μmol/L. CONCLUSIONS Our results provide evidence that the isolated AMG has inhibitory activity against biofilm formation by S. aureus, including MRSA. Thus, isolated AMG proposes a high potential to develop a novel phytopharmaceutical for the treatment of MRSA.
Collapse
Affiliation(s)
- Nguyen Thi Mai Phuong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam.
| | - Ngo Van Quang
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam
| | - Ta Thu Mai
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam
| | - Nguyen Vu Anh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam
| | - Chutima Kuhakarn
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down Bath, BA2 7AY, Bath, UK.
| |
Collapse
|