1
|
Konovalova IS, Shishkina SV, Wyshusek M, Patzer M, Reiss GJ. Supramolecular architecture of theophylline polymorphs, monohydrate and co-crystals with iodine: study from the energetic viewpoint. RSC Adv 2024; 14:29774-29788. [PMID: 39301236 PMCID: PMC11409841 DOI: 10.1039/d4ra04368e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The regularities of crystal structure organization were thoroughly studied in all to date known polymorphic modifications of theophylline (THP) using an energetic approach. The monohydrate and a co-crystal of theophylline with one half equivalent of an iodine molecule were similarly investigated. The calculations of pairwise interaction energies have showed that the crystals studied can be divided into two groups according to their basic structural motifs: columnar-layered or columnar. The energetic approach also allows the role of different interactions in the crystal structure formation to be estimated. It was found that strong N-H⋯N, N-H⋯O hydrogen bonds and stacking interactions play the most important roles in polymorphic modifications of THP and the THP monohydrate. In the case of the co-crystal with iodine, N-H⋯O hydrogen bond participates in the dimeric building unit formation. However, instead of a stacking interaction the π⋯π interaction between carbonyl groups of neighboring molecules plays the highest role in the supramolecular architecture of this crystal. The lattice energies calculations in periodic conditions for polymorphic structures have shown that polymorph with the most anisotropic energetic structure may be considered as stable and all others forms metastable. In the polymorphic modification 1 of THP a zwitter-ionic resonance form is predominant, which affects significantly the solubility and the intermolecular interactions of this modification.
Collapse
Affiliation(s)
- Irina S Konovalova
- Institut für Bioanorganische Chemie Heinrich-Heine-Universität Dusseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
- SSI "Institute for Single Crystals", National Academy of Science of Ukraine 60 Nauky Ave. Kharkiv 61001 Ukraine
| | - Svitlana V Shishkina
- SSI "Institute for Single Crystals", National Academy of Science of Ukraine 60 Nauky Ave. Kharkiv 61001 Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine Akademika Kukharya Street 5 Kyiv 02094 Ukraine
| | - Maik Wyshusek
- Institut für Bioanorganische Chemie Heinrich-Heine-Universität Dusseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Michael Patzer
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Guido J Reiss
- Institut für Bioanorganische Chemie Heinrich-Heine-Universität Dusseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| |
Collapse
|
2
|
Yin Y, Shen H. Melatonin ameliorates acute lung injury caused by paraquat poisoning by promoting PINK1 and BNIP3 expression. Toxicology 2023; 490:153506. [PMID: 37028639 DOI: 10.1016/j.tox.2023.153506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Paraquat (PQ) poisoning can result in multiple organ dysfunction syndrome, mainly manifesting as acute lung injury and acute respiratory distress syndrome. No specific cure exists for PQ poisoning. However, by scavenging mitochondrial DNA (mtDNA), the damage-associated molecular pattern during PQ poisoning, mitophagy can ameliorate the downstream inflammatory pathways activated by mtDNA. Melatonin (MEL), however, can promote the expression of PINK1 and BNIP3, which are key proteins involved in mitophagy. In this study, we first explored whether MT could reduce PQ-induced acute lung injury by affecting mitophagy in animal models, and then, we studied the specific mechanism associated with this process through in vitro experiments. We also evaluated MEL intervention in the PQ group, while inhibiting the expression of PINK1 and BNIP3, to further determine whether the protective effects of MEL are associated with its effect on mitophagy. We found that when the expression of PINK1 and BNIP3 was inhibited, MEL intervention could not reduce mtDNA leakage and the release of inflammatory factors caused by PQ exposure, suggesting that the protective effect of MEL was blocked. These results suggest that by promoting the expression of PINK1 and BNIP3 and activating mitophagy, MEL can reduce mtDNA/TLR9-mediated acute lung injury during PQ poisoning. The results of this study could provide guidance for the clinical treatment of PQ poisoning to reduce associated mortality.
Collapse
|
3
|
Reiss GJ, Wyshusek M. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4]− anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C21H33Cl9Fe2N12O9, trigonal,
R
3
‾
$R\overline{3}$
(no. 148), a = 13.1897(3) Å, c = 39.5222(9) Å, Z = 6, V = 5954.4(3) Å3, R
gt
(F) = 0.0255, wR
ref
(F
2) = 0.0743, T = 120 K.
Collapse
Affiliation(s)
- Guido J. Reiss
- Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , D-40225 Düsseldorf , Germany
| | - Maik Wyshusek
- Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , D-40225 Düsseldorf , Germany
| |
Collapse
|
4
|
Hu Y, Qian C, Sun H, Li Q, Wang J, Hua H, Dai Z, Li J, Li T, Ding Y, Yang X, Zhang W. Differences in epithelial-mesenchymal-transition in paraquat-induced pulmonary fibrosis in BALB/C and BALB/C (nu/nu) nude mice. Biomed Pharmacother 2021; 143:112153. [PMID: 34507117 DOI: 10.1016/j.biopha.2021.112153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Exposure to the toxic herbicide paraquat (PQ) can lead to the active absorption and enrichment of alveolar epithelial cells, resulting in pulmonary fibrosis and respiratory failure. At present, no effective clinical treatment is available. Notably, however, patients infected with human acquired immunodeficiency virus (HIV) (with T lymphocyte deficiency) do not show pulmonary fibrosis after PQ poisoning, suggesting that T lymphocytes may be involved in the occurrence and pathological development of lung fibers following PQ exposure, although relevant studies remain limited. Here, we found that the degree of pulmonary fibrosis induced by intragastric administration of PQ in congenital immunodeficiency BALB/C (nu/nu) nude (T lymphocyte loss) mice was lower than that in normal mice. However, pulmonary fibrosis was aggravated after transplantation of BALB/C (nu/nu) T lymphocytes into congenital immunodeficiency mice. This study is the first to report on the involvement of T lymphocytes in the occurrence and pathological development of lung fibers induced by PQ exposure. Thus, T cells may be an important cellular target for the clinical treatment of pulmonary fibrosis caused by PQ.
Collapse
Affiliation(s)
- Yegang Hu
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China
| | - Chuanyun Qian
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Qiankui Li
- School of Food and Drug, Shandong Institute of Commerce and Technology, 250014 Jinan, Shandong, China
| | - Jinde Wang
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Hairong Hua
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Zichao Dai
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Jintao Li
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Tao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014 Jinan, Shandong, China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medical University, 261000 Weifang, Shandong, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, 650500 Kunming, Yunnan, China.
| | - Wei Zhang
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China.
| |
Collapse
|
5
|
Mohamed Sofian Z, Harun N, Mahat MM, Nor Hashim NA, Jones SA. Investigating how amine structure influences drug-amine ion-pair formation and uptake via the polyamine transporter in A549 lung cells. Eur J Pharm Biopharm 2021; 168:53-61. [PMID: 34455038 DOI: 10.1016/j.ejpb.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022]
Abstract
Transiently associating amines with therapeutic agents through the formation of ion-pairs has been established both in vitro and in vivo as an effective means to systemically direct drug delivery to the lung via the polyamine transport system (PTS). However, there remains a need to better understand the structural traits required for effective PTS uptake of drug ion-pairs. This study aimed to use a structurally related series of amine counterions to investigate how they influenced the stability of theophylline ion-pairs and their active uptake in A549 cells. Using ethylamine (mono-amine), ethylenediamine (di-amine), spermidine (tri-amine) and spermine (tetra-amine) as counterions the ion-pair affinity was shown to increase as the number of protonated amine groups in the counterion structure increased. The mono and diamines generated a single hydrogen bond and the weakest ion-pair affinities (pKFTIR: 1.32 ± 0.04 and 1.43 ± 0.02) whereas the polyamines produced two hydrogen bonds and thus the strongest ion-pair affinities (pKFTIR: 1.93 ± 0.05 and 1.96 ± 0.04). In A549 cells depleted of endogenous polyamines using α-difluoromethylornithine (DFMO), the spermine-theophylline uptake was significantly increased (p < 0.05) compared to non-amine depleted cells and this evidenced the active PTS sequestering of the ion-pair. The mono-amine and di-amine failed to enhance theophylline uptake in these A549 cells, but the tri-amine and tetra-amine both almost doubled the theophylline uptake into the cells when compared to the uptake of free drug. As the data indicated that polyamines with at least 3 amines were required to form ion-pairs that could enhance A549 cell uptake, it suggested that at least two amines were required to physically stabilise the ion-pair and one to interact with the PTS.
Collapse
Affiliation(s)
- Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Insitute of Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40000 Shah Alam, Selangor, Malaysia
| | - Nikman Adli Nor Hashim
- Centre for Drug Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Stuart A Jones
- Insitute of Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
6
|
Reiss GJ, Wyshusek M. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
C14H18N8O8SnCl6, monoclinic, P21/n (no. 14), a = 8.1810(2) Å, b = 12.6195(3) Å, c = 11.3811(2) Å, β = 90.258(2)°, Z = 2, V = 1174.97(5) Å3, R
gt(F) = 0.0266, wR
ref = 0.0620, T = 290 K.
Collapse
Affiliation(s)
- Guido J. Reiss
- Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung, Heinrich–Heine–Universität Düsseldorf , Universitätsstrasse 1 , D-40225 Düsseldorf , Germany
| | - Maik Wyshusek
- Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung, Heinrich–Heine–Universität Düsseldorf , Universitätsstrasse 1 , D-40225 Düsseldorf , Germany
| |
Collapse
|
7
|
Wyshusek M, Reiss GJ, Frank W. The Triple Salt 2(C
7
H
9
N
4
O
2
)[MoOCl
4
(H
2
O)] ⋅ 2(C
7
H
9
N
4
O
2
)Cl ⋅ (H
17
O
8
)Cl Containing a
C
2
‐symmetrical Unbranched H
+
(H
2
O)
8
Zundel
type Species in a Framework Composed of Theophyllinium, Aquatetrachloridooxidomolybdate and Chloride Ions. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maik Wyshusek
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstr 1 40225 Düsseldorf Germany
| | - Guido J. Reiss
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstr 1 40225 Düsseldorf Germany
| | - Walter Frank
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstr 1 40225 Düsseldorf Germany
| |
Collapse
|
8
|
Sofian ZM, Benaouda F, Wang JT, Lu Y, Barlow DJ, Royall PG, Farag DB, Rahman KM, Al‐Jamal KT, Forbes B, Jones SA. A Cyclodextrin-Stabilized Spermine-Tagged Drug Triplex that Targets Theophylline to the Lungs Selectively in Respiratory Emergency. ADVANCED THERAPEUTICS 2020; 3:2000153. [PMID: 33043128 PMCID: PMC7536984 DOI: 10.1002/adtp.202000153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Ion-pairing a lifesaving drug such as theophylline with a targeting moiety could have a significant impact on medical emergencies such as status asthmaticus or COVID-19 induced pneumomediastinum. However, to achieve rapid drug targeting in vivo the ion-pair must be protected against breakdown before the entry into the target tissue. This study aims to investigate if inserting theophylline, when ion-paired to the polyamine transporter substrate spermine, into a cyclodextrin (CD), to form a triplex, could direct the bronchodilator to the lungs selectively after intravenous administration. NMR demonstrates that upon the formation of the triplex spermine protruded from the CD cavity and this results in energy-dependent uptake in A549 cells (1.8-fold enhancement), which persists for more than 20 min. In vivo, the triplex produces a 2.4-fold and 2.2-fold increase in theophylline in the lungs 20 min after injection in rats and mice, respectively (p < 0.05). The lung targeting is selective with no increase in uptake into the brain or the heart where the side-effects of theophylline are treatment-limiting. Selectively doubling the concentration of theophylline in the lungs could improve the benefit-risk ratio of this narrow therapeutic index medicine, which continues to be important in critical care.
Collapse
Affiliation(s)
- Zarif M. Sofian
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversiti MalayaKuala Lumpur50603Malaysia
| | - Faiza Benaouda
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Julie Tzu‐Wen Wang
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Yuan Lu
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - David J. Barlow
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Paul G. Royall
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Doaa B. Farag
- Faculty of PharmacyMisr International UniversityCairo11431Egypt
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Khuloud T. Al‐Jamal
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Ben Forbes
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Stuart A. Jones
- School of Cancer and Pharmaceutical SciencesFaculty of Life Sciences & MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| |
Collapse
|
9
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
10
|
Dutton B, Woods A, Sadler R, Prime D, Barlow DJ, Forbes B, Jones SA. Using Polar Ion-Pairs to Control Drug Delivery to the Airways of the Lungs. Mol Pharm 2020; 17:1482-1490. [PMID: 32101010 DOI: 10.1021/acs.molpharmaceut.9b01166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The rapid absorptive clearance of drugs delivered to the airways of the lungs means that many inhaled medicines have a short duration of action. The aim of this study was to investigate whether forming polar ion-pairs can modify drug absorption to slow down clearance from the airways. Salbutamol was used as a model drug and was formulated as ion-pairs in an aqueous solution with three negatively charged hydrophilic counterions: sulfate (molecular weight (MW) 142), gluconate (MW 218), and phytate (MW 736) (association constants of 1.57, 2.27, and 4.15, respectively) and one negatively charged hydrophobic counterion, octanoate (MW 166) (association constant, 2.56). All of the counterions were well tolerated by Calu-3 human bronchial epithelial cells when screened for toxicity in vitro using conditions that in silico simulations suggested maintain >80% drug-counterion association. The transport of salbutamol ion-pairs with higher polar surface area (PSA), i.e., the sulfate (PSA 52%), gluconate (PSA 50%), and phytate (PSA 79%) ion-pairs, was significantly lower compared to that of the drug alone (PSA 30%, p < 0.05). In contrast, the octanoate ion-pair (PSA 23%) did not significantly alter the salbutamol transport. The transport data for the gluconate ion-pair suggested that the pulmonary absorption half-life of the ion-paired drug would be double that of salbutamol base, and this illustrates the promise of increasing drug polarity using noncovalent complexation as an approach to control drug delivery to the airways of the lungs.
Collapse
Affiliation(s)
- Bridie Dutton
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Arcadia Woods
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Robyn Sadler
- GlaxoSmithKline, Park Road, Ware, Hertfordshire SG12 0DP, U.K
| | - David Prime
- GlaxoSmithKline, Park Road, Ware, Hertfordshire SG12 0DP, U.K
| | - David J Barlow
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|