1
|
Higashi T, Taharabaru T, Motoyama K. Synthesis of cyclodextrin-based polyrotaxanes and polycatenanes for supramolecular pharmaceutical sciences. Carbohydr Polym 2024; 337:122143. [PMID: 38710552 DOI: 10.1016/j.carbpol.2024.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Cyclodextrins (CDs) are essential in the pharmaceutical industry and have long been used as food and pharmaceutical additives. CD-based interlocked molecules, such as rotaxanes, polyrotaxanes, catenanes, and polycatenanes, have been synthesized and have attracted considerable attention in supramolecular chemistry. Among them, CD polyrotaxanes have been employed as slide-ring materials and biomaterials. CD polycatenanes are new materials; therefore, to date, no examples of applied research on CD polycatenanes have been reported. Consequently, we expect that applied research on CD polycatenanes will accelerate in the future. This review article summarizes the syntheses and structural analyses of CD polyrotaxanes and polycatenanes to facilitate their applications in the pharmaceutical industry. We believe that this review will promote further research on CD-based interlocked molecules.
Collapse
Affiliation(s)
- Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
2
|
Zhang S, Tamura A, Yui N. Enhanced Tumor Targeting and Antitumor Activity of Methylated β-Cyclodextrin-Threaded Polyrotaxanes by Conjugating Cyclic RGD Peptides. Biomolecules 2024; 14:223. [PMID: 38397461 PMCID: PMC10886891 DOI: 10.3390/biom14020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously reported that acid-degradable methylated β-cyclodextrins (Me-β-CDs)-threaded polyrotaxanes (Me-PRXs) can induce autophagic cell death through endoplasmic reticulum (ER) stress-related autophagy, even in apoptosis-resistant cells. Hence, Me-PRXs show great potential as anticancer therapeutics. In this study, peptide-supermolecule conjugates were designed to achieve the targeted delivery of Me-PRX to malignant tumors. Arg-Gly-Asp peptides are well-known binding motifs of integrin αvβ3, which is overexpressed on angiogenic sites and many malignant tumors. The tumor-targeted cyclic Arg-Gly-Asp (cRGD) peptide was orthogonally post-modified to Me-PRX via click chemistry. Surface plasmon resonance (SPR) results indicated that cRGD-Me-PRX strongly binds to integrin αvβ3, whereas non-targeted cyclic Arg-Ala-Glu (cRGE) peptide conjugated to Me-PRX (cRGE-Me-PRX) failed to interact with integrins αvβ3. In vitro, cRGD-Me-PRX demonstrated enhanced cellular internalization and antitumor activity in 4T1 cells than that of unmodified Me-PRX and non-targeted cRGE-Me-PRX, due to its ability to recognize integrin αvβ3. Furthermore, cRGD-Me-PRX accumulated effectively in tumors, leading to antitumor effects, and exhibited excellent biocompatibility and safety in vivo. Therefore, cRGD conjugation to enhance selectivity for integrin αvβ3-positive cancer cells is a promising design strategy for Me-PRXs in antitumor therapy.
Collapse
Affiliation(s)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | | |
Collapse
|
3
|
Xing C, Zheng X, Deng T, Zeng L, Liu X, Chi X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023; 15:pharmaceutics15051536. [PMID: 37242778 DOI: 10.3390/pharmaceutics15051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.
Collapse
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoming Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Deng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xin Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xinjin Chi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
5
|
Supermolecule—Drug Conjugates Based on Acid-Degradable Polyrotaxanes for pH-Dependent Intracellular Release of Doxorubicin. Molecules 2023; 28:molecules28062517. [PMID: 36985487 PMCID: PMC10056152 DOI: 10.3390/molecules28062517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Doxorubicin (DOX)-conjugated acid-degradable polyrotaxanes (PRXs) were designed as supramolecular drug carriers capable of releasing drugs in acidic cellular environments. Acid-degradable PRXs composed of α-cyclodextrin (α-CD) as a cyclic molecule, poly(ethylene glycol) (PEG) as a polymer axis, and N-triphenylmethyl (N-Trt) groups as an acid-labile stopper molecules were synthesized and DOX was conjugated with the threaded α-CDs in the PRXs. Because the acid-induced cleavage of N-Trt groups in PRXs leads to PRX dissociation, the DOX-modified α-CDs were released under acidic conditions (pH 5.0). The cytotoxicity of DOX-conjugated PRXs in colon-26 cells revealed significant cell death for DOX-conjugated PRXs after 48 h of treatment. Confocal laser scanning microscopy (CLSM) analysis revealed that the fluorescence signals derived from DOX-conjugated PRXs were observed in cellular nuclei after 48 h, suggesting that the DOX-modified α-CDs were released and accumulated in cellular nuclei. These results confirmed that acid-degradable PRXs can be utilized as drug carriers capable of releasing drug-modified α-CDs in acidic lysosomes and eliciting cytotoxicity. Overall, acid-degradable PRXs represent a promising supramolecular framework for the delivery and intracellular release of drug-modified α-CDs, and PRX–drug conjugates are expected to contribute to the development of pH-responsive drug carriers for cancer therapy.
Collapse
|
6
|
Zhu H, Tamura A, Zhang S, Terauchi M, Yoda T, Yui N. Mitigating RANKL-induced cholesterol overload in macrophages with β-cyclodextrin-threaded polyrotaxanes suppresses osteoclastogenesis. Biomater Sci 2022; 10:5230-5242. [PMID: 35904082 DOI: 10.1039/d2bm00833e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free cholesterol acts as an endogenous agonist for estrogen-related receptor α (ERRα), a nuclear receptor that regulates osteoclastogenesis. Because stimulation of macrophages with receptor activator of nuclear factor κB ligand (RANKL) induces an overload of free cholesterol and activates ERRα, we hypothesized that direct removal of cellular cholesterol would suppress osteoclastogenesis. In this study, the effect of 2-hydroxypropyl β-cyclodextrin (HP-β-CD), a highly water-soluble cyclic glucopyranose, and β-CD-threaded polyrotaxanes (PRXs), supramolecular polymers designed to release threaded β-CDs in acidic lysosomes, on RANKL-induced cholesterol overload and osteoclast differentiation of murine macrophage-like RAW264.7 cells were investigated. PRXs suppressed RANKL-induced cholesterol overload. Additionally, RANKL-induced osteoclast differentiation of RAW264.7 cells was inhibited by PRXs. In contrast, HP-β-CD did not reduce cholesterol levels or inhibit osteoclast differentiation in RAW264.7 cells. Gene expression analysis of osteoclast markers suggested that PRXs suppress only the early stage of osteoclast differentiation, as PRXs cannot be internalized into multinucleated osteoclasts. However, modification of PRXs with cell-penetrating peptides facilitated their cellular uptake into multinucleated osteoclasts and inhibited osteoclast maturation. Thus, PRXs are promising candidates for inhibiting osteoclast differentiation by suppressing cholesterol overload and may be useful for treating osteoporosis or other bone defects caused by the overactivity of osteoclasts.
Collapse
Affiliation(s)
- Hongfei Zhu
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
7
|
Tamura A, Nishida K, Zhang S, Kang TW, Tonegawa A, Yui N. Cografting of Zwitterionic Sulfobetaines and Cationic Amines on β-Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility. ACS Biomater Sci Eng 2022; 8:2463-2476. [PMID: 35536230 DOI: 10.1021/acsbiomaterials.2c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Cyclodextrins (β-CDs) and β-CD-containing polymers have attracted considerable attention as potential candidates for the treatment of cholesterol-related metabolic and intractable diseases. We have advocated the use of β-CD-threaded acid-degradable polyrotaxanes (PRXs) as intracellular delivery carriers for β-CDs. As unmodified PRXs are insoluble in aqueous solutions, chemical modification of PRXs is an essential process to improve their solubility and impart novel functionalities. In this study, we investigated the effect of the modification of zwitterionic sulfobetaines on PRXs due to their excellent solubility, biocompatibility, and bioinert properties. Sulfobetaine-modified PRXs were synthesized by converting the tertiary amino groups of precursor 2-(N,N-dimethylamino)ethyl carbamate-modified PRXs (DMAE-PRXs) using 1,3-propanesultone. The resulting sulfobetaine-modified PRXs showed high solubility in aqueous solutions and no cytotoxicity, while their intracellular uptake levels were low. To further improve this system, we designed PRXs cografted with zwitterionic sulfobetaine and cationic DMAE groups via partial betainization of the DMAE groups. Consequently, the interaction with proteins, intracellular uptake levels, and liver accumulation of partly betainized PRXs were found to be higher than those of completely betainized PRXs. Additionally, partly betainized PRXs showed no toxicity in vitro or in vivo despite the presence of residual cationic DMAE groups. Furthermore, partly betainized PRXs ameliorated the abnormal free cholesterol accumulation in Niemann-Pick type C disease patient-derived cells at lower concentrations than β-CD derivatives and previously designed PRXs. Overall, the cografting of sulfobetaines and amines on PRXs is a promising chemical modification for therapeutic applications due to the high cholesterol-reducing ability and biocompatibility of such modified PRXs. In addition, modification with both zwitterionic and cationic groups can be used for the design of various polymeric materials exhibiting both bioinert and bioactive characteristics.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
8
|
Nomura T, Onimura K, Yamabuki K. Synthesis and Polymerization of Acid-degradable Rotaxane Using Boc Protecting Group. CHEM LETT 2022. [DOI: 10.1246/cl.210590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsugumi Nomura
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Kenjiro Onimura
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Kazuhiro Yamabuki
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
9
|
Ohashi M, Tamura A, Yui N. Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11102-11114. [PMID: 34478294 DOI: 10.1021/acs.langmuir.1c01894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmacological and biomedical applications of cyclodextrin (CD)-threaded polyrotaxanes (PRXs) have gained increasing attention. We had previously investigated the therapeutic effects of oligo(ethylene glycol) (OEG)-modified β-CD PRXs in congenital metabolic disorders. Although the chemical modification of PRXs is crucial for these applications, the influences of the chemical structure of OEG modified on PRXs were not completely understood. The current study focuses on the terminal group structures of triethylene glycol (TEG)-tethered chains, wherein three series of TEG-tethered PRXs (TEG-PRXs) with various TEG terminal group structures (hydroxy, methoxy, and ethoxy) were synthesized to investigate their physicochemical properties and biointeractions. The methoxy and ethoxy-terminated TEG-PRXs exhibited temperature-dependent phase transitions in phosphate buffer saline and formed coacervate droplets above their cloud points. A comprehensive analysis revealed that the hydrophobicity of the terminal group structures of the TEG-tethered chains played a dominant role in exhibiting temperature-dependent phase transition. Furthermore, the hydrophobicity of the terminal group structures of TEG-tethered chains on PRXs also affected the interactions with lipids and proteins, with the hydrophobic ethoxy-terminated TEG-tethered chains showing the highest interactions. However, in normal human skin fibroblasts, the moderately hydrophobic methoxy-terminated TEG-modified PRXs showed the highest intracellular uptake levels. As a result, we concluded that methoxy-terminated TEG is a suitable chemical modification for the biomedical applications of PRXs due to the negligible temperature responsivity around physiological temperature and significant intracellular uptake levels. The findings of this study shall contribute significantly to the rational design of PRXs and CD-based materials for future pharmacological and biomedical applications.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
10
|
Zhang S, Tamura A, Yui N. Weakly acidic carboxy group-grafted β-cyclodextrin-threaded acid-degradable polyrotaxanes for modulating protein interaction and cellular internalization. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:494-510. [PMID: 34248421 PMCID: PMC8245098 DOI: 10.1080/14686996.2021.1935315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 05/13/2023]
Abstract
To improve the therapeutic potential of β-cyclodextrin (β-CD)-threaded acid-degradable polyrotaxanes (β-CD PRXs) in cholesterol-related metabolic disorders, we investigated the effect of carboxylation of β-CD PRXs on intracellular uptake. In this study, we established a synthetic method for the modification of carboxylalkyl carbamates on β-CD PRXs without degradation and synthesized three series of carboxyalkyl carbamate group-modified β-CD PRXs with different alkyl spacer lengths. The modification of carboxymethyl carbamate (CMC), carboxyethyl carbamate (CEC), and carboxypropyl carbamate (CPC) on the β-CD PRXs slightly reduced the interaction of the PRXs with the lipid layer model compared with the modification of 2-(2-hydroxyethoxy)ethyl carbamate (HEE-PRX), which was used in our previous studies. However, all the carboxylated β-CD PRXs showed a significantly stronger interaction with a protein model compared with HEE-PRX. The carboxylated β-CD PRXs showed significantly high intracellular uptake, through macrophage scavenger receptor A (MSR-A)-mediated endocytosis, in MSR-A-positive RAW 264.7 cells compared with HEE-PRX. Interestingly, the carboxylated β-CD PRXs also showed significantly higher intracellular uptake even in MSR-A-negative cells compared with HEE-PRX. Carboxylated β-CD PRXs are considered to strongly interact with other membrane proteins, resulting in high intracellular uptake. The length of the alkyl spacer affected the intracellular uptake levels of carboxylated PRXs, however, this relationship was varied for different cell types. Furthermore, none of the carboxylated β-CD PRXs exhibited cytotoxicity in the RAW 264.7 and NIH/3T3 cells. Altogether, carboxylation of β-CD PRXs is a promising chemical modification approach for their therapeutic application because carboxylated β-CD PRXs exhibit high cellular internalization efficiency in MSR-A-negative cells and negligible toxicity.
Collapse
Affiliation(s)
- Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
11
|
Cyclic RGD Peptide Targeting Coated Nano Drug Co-Delivery System for Therapeutic Use in Age-Related Macular Degeneration Disease. Molecules 2020; 25:molecules25214897. [PMID: 33113897 PMCID: PMC7660171 DOI: 10.3390/molecules25214897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) expression increased significantly in the pathogenesis of age-related macular degeneration, which induced the formation of pathological blood vessels. Dexamethasone is an exogenous anti-angiogenic drug while bevacizumab is an endogenous anti-angiogenic drug. They both have been widely used in ophthalmology. However, independent administration is not enough to completely block the development of choroidal neovascularization (CNV), and the number of eyes vitreous injections is limited. Reasonable combination of drugs may produce significantly better therapeutic effect than single drug treatment. The cyclic RGD (cRGD) peptide has a particularly high affinity with retinal pigment epithelial cells, where VEGF secretes from. In this study, we prepared nanoparticles of bevacizumab and dexamethasone with cRGD peptide as the target (aBev/cRGD-DPPNs). The particle size of the aBev/cRGD-DPPNs was 213.8 ± 1.5 nm, SEM results showed that the nano-carriers were well dispersed and spherical. The cell uptake study demonstrated the selectivity of the aBev/cRGD-DPPN to ARPE-19 with αVβ3 over expressed. The aBev/cRGD-DPPNs had a better apoptosis induction effect and an obvious inhibitory effect on migration, invasion, and capillary-like structures formation of human umbilical vein epithelial cells. The fluorescein fundus angiography study, immunohistochemistry and histopathological evaluation showed the aBev/cRGD-DPPNs greatly reduced the development of CNV on a rabbit model.
Collapse
|
12
|
Tonegawa A, Tamura A, Yui N. Emerging Nanoassembly of Polyrotaxanes Comprising Acetylated α-Cyclodextrins and High-Molecular-Weight Axle Polymer. ACS Macro Lett 2019; 8:826-834. [PMID: 35619503 DOI: 10.1021/acsmacrolett.9b00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetylated α-cyclodextrin (α-CD)/poly(ethylene glycol) (PEG)-based polyrotaxanes (Ac-PRXs) with varying degrees of acetylation (DA) and molecular weight of axle PEG were synthesized and their solubility in aqueous solutions was investigated. Ac-PRXs with low DA (less than 35%) were dissolved in aqueous solutions without considering the molecular weight of axle PEG, whereas Ac-PRXs with high DA (more than 40%) and low molecular weight of axle PEG (less than 35000) were precipitated into the solutions. Interestingly, Ac-PRXs with high DA and high molecular weight of axle PEG (100000) exhibited a colloidal dispersion in aqueous solutions. It is considered that the threaded acetylated α-CDs formed hydrophobic microenvironments via hydrophobic interactions and the noncovered segments of axle PEGs provided colloidal stability. Furthermore, the potential application of Ac-PRX100k as a drug carrier was examined and it was established that Ac-PRX100k can encapsulate a hydrophobic drug. Accordingly, acetylation of PRXs is a viable approach to promote solubility in aqueous solutions and prepare self-assembled nanoparticles.
Collapse
Affiliation(s)
- Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
13
|
Tamura A. [Intracellularly Degradable Polyrotaxanes for Therapeutic Applications]. YAKUGAKU ZASSHI 2019; 139:143-155. [PMID: 30713223 DOI: 10.1248/yakushi.18-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, the application of β-cyclodextrins (β-CDs) as therapeutic agents has received considerable attention. β-CDs have been reported to have therapeutic effects on various diseases, such as Niemann-Pick type C (NPC) disease, a family of lysosomal storage disorders characterized by the lysosomal accumulation of cholesterol. To further improve the therapeutic efficacy of β-CDs, the use of β-CD-threaded polyrotaxanes (PRXs) has been proposed as a carrier of β-CDs for NPC disease. PRXs are supramolecular polymers composed of many CDs threaded onto a linear polymer chain and capped with bulky stopper molecules. In this review, the design of PRXs and their therapeutic applications are described. To achieve the intracellular release of threaded β-CDs from PRXs, stimuli-cleavable linkers are introduced in an axle polymer of PRXs. The stimuli-labile PRXs can dissociate into their constituent molecules by a cleavage reaction under specific stimuli, such as pH reduction in lysosomes. The release of the threaded β-CDs from acid-labile PRXs in acidic lysosomes leads to the formation of an inclusion complex with the cholesterol that has accumulated in NPC disease patient-derived fibroblasts, thus promoting the extracellular excretion of the excess cholesterol. Moreover, the administration of PRXs to a mouse model of NPC disease caused significant suppression of the tissue accumulation of cholesterol, resulting in a prolonged life span in the model mice. Additionally, the induction of autophagy by the methylated β-CD-threaded PRXs (Me-PRXs) is described. Accordingly, the stimuli-labile PRXs are expected to be effective carriers of CDs for therapeutic applications.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
14
|
Shibaguchi K, Tamura A, Terauchi M, Matsumura M, Miura H, Yui N. Mannosylated Polyrotaxanes for Increasing Cellular Uptake Efficiency in Macrophages through Receptor-Mediated Endocytosis. Molecules 2019; 24:E439. [PMID: 30691115 PMCID: PMC6384580 DOI: 10.3390/molecules24030439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 01/01/2023] Open
Abstract
Macrophages play an important role in the regulation of inflammation and immune response as well as the pathogenesis of chronic inflammatory diseases and cancer. Therefore, targeted delivery of therapeutic reagents to macrophages is an effective method for treatment and diagnosis. We previously examined the therapeutic applications of polyrotaxanes (PRXs) comprised of multiple cyclodextrins (CDs) threaded on a polymer chain and capped with bulky stopper molecules. In the present study, we designed an α-d-mannose-modified α-CD/poly(ethylene glycol)-based PRX (Man-PRX). The intracellular uptake of Man-PRX through the interaction with macrophage mannose receptor (MMR) in macrophage-like RAW264.7 cells was examined. Intracellular Man-PRX uptake was observed in MMR-positive RAW264.7 cells but was negligible in MMR-negative NIH/3T3 cells. In addition, the intracellular Man-PRX uptake in RAW264.7 cells was significantly inhibited in the presence of free α-d-mannose and an anti-MMR antibody, which suggests that MMR is involved in the intracellular uptake of Man-PRX. Moreover, the polarization of RAW264.7 cells affected the Man-PRX internalization efficiency. These results indicate that Man-PRX is an effective candidate for selective targeting of macrophages through a specific interaction with the MMR.
Collapse
Affiliation(s)
- Kai Shibaguchi
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan.
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masahiko Terauchi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Mitsuaki Matsumura
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan.
| | - Hiroyuki Miura
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan.
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
15
|
Yamada Y, Daikuhara S, Tamura A, Nishida K, Yui N, Harashima H. Enhanced autophagy induction via the mitochondrial delivery of methylated β-cyclodextrin-threaded polyrotaxanes using a MITO-Porter. Chem Commun (Camb) 2019; 55:7203-7206. [DOI: 10.1039/c9cc03272j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Failure of autophagy induction results in the accumulation of abnormal mitochondria to cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Sapporo 060-0812
- Japan
| | | | - Atsushi Tamura
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
| | - Kei Nishida
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
| | | |
Collapse
|
16
|
Xiao Y, Zhang M, Fan Y, Zhang Q, Wang Y, Yuan W, Zhou N, Che J. Novel controlled drug release system engineered with inclusion complexes based on carboxylic graphene. Colloids Surf B Biointerfaces 2018; 175:18-25. [PMID: 30513470 DOI: 10.1016/j.colsurfb.2018.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
A novel drug carrier is constructed by compositing hydrophilic hydroxypropyl-β-cyclodextrins (HP-β-CD) and carboxylated graphene nanomaterial (GO-COOH). Fourier transform infrared spectroscopy confirms that the two materials are successfully combined via chemical bonds. Further, a crosslinking agent of glutaraldehyde is applied to fabricate composite GO-COO-HP-β-CD nanospheres, as demonstrated by an atomic force microscope. Dexamethasone (DEX) is selected as the model drug, and the drug loading efficiency and water solubility of the nanospheres greatly increased. Additionally, the achieved DEX/nanosphere inclusion complex exhibits better heat resistance compared with pure DEX, which is a desired property for drug processing. More importantly, different models are applied to different releasing durations to investigate in detail the release profile of DEX. The best fitting release kinetics model is given to reveal the release mechanism of the drug delivery system. The highest hemolysis rate of the DEX/nanosphere inclusion is 0.44%, far lower than the standard of 5% delivered by the American Society for Testing and Materials, ensuring its safety in practical applications. Meanwhile, recalcification tests indicate that DEX/nanosphere retains the normal blood coagulation function. In vitro cytotoxicity tests of the inclusion demonstrate that the nanospheres have no toxicity and are qualified for intravenous applications with good blood compatibility. Finally, the bioactivity of DEX after release from the carriers is investigated. Results corroborate that the drug anti-inflammation efficacy is not affected and that the biomedical function can be well retained. The engineered controlled drug release system represents a promising formulation platform for a broad range of therapeutic medicine in pharmaceutical technology.
Collapse
Affiliation(s)
- Yinghong Xiao
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yunting Fan
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenwen Yuan
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jianfei Che
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
17
|
Matsui H, Tamura A, Osawa M, Tonegawa A, Arisaka Y, Matsumura M, Miura H, Yui N. Scavenger Receptor A-Mediated Targeting of Carboxylated Polyrotaxanes to Macrophages and the Impacts of Supramolecular Structure. Macromol Biosci 2018; 18:e1800059. [PMID: 29900668 DOI: 10.1002/mabi.201800059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/14/2018] [Indexed: 01/18/2023]
Abstract
Because macrophages are involved in the pathology of many diseases, targeting delivery of therapeutic molecules to macrophages is important issue. Polyrotaxanes (PRXs) composed of multiple cyclodextrins threaded with a linear polymer were utilized as a therapeutic agent for metabolic disease and for regulating cellular metabolism. For targeting delivery of PRXs to macrophages, carboxyethyl ether group-modified PRXs (CEE-PRXs) are designed for promoting interaction to macrophage scavenger receptor class A (SR-A). The cellular internalization of anionic CEE-PRXs in SR-A-positive macrophage-like cells (RAW264.7) is remarkably higher than that of nonionic PRX, whereas the cellular internalization efficiency in SR-A-negative cells is comparable between anionic and nonionic PRX. Furthermore, the molecular weight of axle polymer and the number of CEE groups modified on PRX are found to be the predominant factors governing cellular internalization efficiency in SR-A-positive RAW264.7 cells. Thus, CEE-PRXs are a promising design for targeting delivery of PRXs to macrophages.
Collapse
Affiliation(s)
- Hideto Matsui
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Mamoru Osawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Mitsuaki Matsumura
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Hiroyuki Miura
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
18
|
Nishida K, Tamura A, Yui N. pH-Responsive Coacervate Droplets Formed from Acid-Labile Methylated Polyrotaxanes as an Injectable Protein Carrier. Biomacromolecules 2018; 19:2238-2247. [DOI: 10.1021/acs.biomac.8b00301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|