1
|
Ladinsky MS, Zhu L, Ullah I, Uchil PD, Kumar P, Kay MS, Bjorkman PJ. Electron tomography visualization of HIV-1 virions trapped by fusion inhibitors to host cells in infected tissues. J Virol 2024:e0143224. [PMID: 39475277 DOI: 10.1128/jvi.01432-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024] Open
Abstract
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide. Although budding virions can be readily imaged by electron tomography (ET) of HIV-1-infected tissues and cultured cells, virions that are fusing (attached to host cells via pre-hairpin intermediates) are not normally visualized, perhaps because the process of membrane fusion is too fast to capture by ET. To image virions during fusion, we used fusion inhibitors to prevent downstream conformational changes in Env that lead to membrane fusion, thereby trapping HIV-1 virions linked to target cells by pre-hairpin intermediates. ET of HIV-1 pseudovirions bound to CD4+/CCR5+ TZM-bl cells revealed presumptive pre-hairpin intermediates as 2-4 narrow spokes linking a virion to the cell surface. To extend these results to a more physiological setting, we used ET to image tissues and organs derived from humanized bone marrow/liver/thymus mice infected with HIV-1 and then treated with CPT31, a high-affinity D-peptide fusion inhibitor linked to cholesterol. Trapped HIV-1 virions were found in all tissues studied (small intestine, mesenteric lymph nodes, spleen, and bone marrow), and spokes representing pre-hairpin intermediates linking trapped virions to cell surfaces were similar in structure and number to those seen in the previous pseudovirus and cultured cell ET study.IMPORTANCETrapped and untrapped HIV-1 virions, both mature and immature, were distinguished by localizing spokes via 3D tomographic reconstructions of HIV-1 infected and fusion-inhibitor-treated tissues of humanized mice. The findings of trapped HIV-1 virions in all tissues examined demonstrate a wide distribution of the CPT31 inhibitor, a desirable property for a potential therapeutic. In addition, the presence of virions trapped by spokes, particularly in vascular endothelial cells, demonstrates that the fusion inhibitors can be used as markers for potential HIV-1-target cells within tissues, facilitating the mapping of HIV-1 target cells within the complex cellular milieu of infected tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Li Zhu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Ladinsky MS, Zhu L, Ullah I, Uchil PD, Kumar P, Kay MS, Bjorkman PJ. Electron tomography visualization of HIV-1 virions trapped by fusion inhibitors to host cells in infected tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608557. [PMID: 39229189 PMCID: PMC11370368 DOI: 10.1101/2024.08.19.608557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide. Although budding virions can be readily imaged by electron tomography (ET) of HIV-1-infected tissues and cultured cells, virions that are fusing (attached to host cells via pre-hairpin intermediates) are not normally visualized, perhaps because the process of membrane fusion is too fast to capture by EM. To image virions during fusion, we used fusion inhibitors to prevent downstream conformational changes in Env that lead to membrane fusion, thereby trapping HIV-1 virions linked to target cells by prehairpin intermediates. ET of HIV-1 pseudovirions bound to CD4+/CCR5+ TZM-bl cells revealed presumptive pre-hairpin intermediates as 2-4 narrow spokes linking a virion to the cell surface. To extend these results to a more physiological setting, we used ET to image tissues and organs derived from humanized bone marrow, liver, thymus (BLT) mice infected with HIV-1 and then treated with CPT31, a high-affinity D-peptide fusion inhibitor linked to cholesterol. Trapped HIV-1 virions were found in all tissues studied (small intestine, mesenteric lymph nodes, spleen, and bone marrow), and spokes representing pre-hairpin intermediates linking trapped virions to cell surfaces were similar in structure and number to those seen in the previous pseudovirus and cultured cell ET study.
Collapse
Affiliation(s)
- Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Li Zhu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06510
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Michael S. Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
3
|
Aoki K, Higashi K, Oda S, Manabe A, Maeda K, Morise J, Oka S, Inuki S, Ohno H, Oishi S, Nonaka M. Engineering a Low-Immunogenic Mirror-Image VHH against Vascular Endothelial Growth Factor. ACS Chem Biol 2024; 19:1194-1205. [PMID: 38695546 DOI: 10.1021/acschembio.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Immunogenicity is a major caveat of protein therapeutics. In particular, the long-term administration of protein therapeutic agents leads to the generation of antidrug antibodies (ADAs), which reduce drug efficacy while eliciting adverse events. One promising solution to this issue is the use of mirror-image proteins consisting of d-amino acids, which are resistant to proteolytic degradation in immune cells. We have recently reported the chemical synthesis of the enantiomeric form of the variable domain of the antibody heavy chain (d-VHH). However, identifying mirror-image antibodies capable of binding to natural ligands remains challenging. In this study, we developed a novel screening platform to identify a d-VHH specific for vascular endothelial growth factor A (VEGF-A). We performed mirror-image screening of two newly constructed synthetic VHH libraries displayed on T7 phage and identified VHH sequences that effectively bound to the mirror-image VEGF-A target (d-VEGF-A). We subsequently synthesized a d-VHH candidate that preferentially bound the native VEGF-A (l-VEGF-A) with submicromolar affinity. Furthermore, immunization studies in mice demonstrated that this d-VHH elicited no ADAs, unlike its corresponding l-VHH. Our findings highlight the utility of this novel d-VHH screening platform in the development of protein therapeutics exhibiting both reduced immunogenicity and improved efficacy.
Collapse
Affiliation(s)
- Keisuke Aoki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Katsuaki Higashi
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sakiho Oda
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Asako Manabe
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kayuu Maeda
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Motohiro Nonaka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
5
|
Coulter SM, Pentlavalli S, Vora LK, An Y, Cross ER, Peng K, McAulay K, Schweins R, Donnelly RF, McCarthy HO, Laverty G. Enzyme-Triggered l-α/d-Peptide Hydrogels as a Long-Acting Injectable Platform for Systemic Delivery of HIV/AIDS Drugs. Adv Healthc Mater 2023; 12:e2203198. [PMID: 36880399 PMCID: PMC11469249 DOI: 10.1002/adhm.202203198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Eradicating HIV/AIDS by 2030 is a central goal of the World Health Organization. Patient adherence to complicated dosage regimens remains a key barrier. There is a need for convenient long-acting formulations that deliver drugs over sustained periods. This paper presents an alternative platform, an injectable in situ forming hydrogel implant to deliver a model antiretroviral drug (zidovudine [AZT]) over 28 days. The formulation is a self-assembling ultrashort d or l-α peptide hydrogelator, namely phosphorylated (naphthalene-2-ly)-acetyl-diphenylalanine-lysine-tyrosine-OH (NapFFKY[p]-OH), covalently conjugated to zidovudine via an ester linkage. Rheological analysis demonstrates phosphatase enzyme instructed self-assembly, with hydrogels forming within minutes. Small angle neutron scattering data suggest hydrogels form narrow radius (≈2 nm), large length fibers closely fitting the flexible cylinder elliptical model. d-Peptides are particularly promising for long-acting delivery, displaying protease resistance for 28 days. Drug release, via hydrolysis of the ester linkage, progress under physiological conditions (37 °C, pH 7.4, H2 O). Subcutaneous administration of Napffk(AZT)Y[p]G-OH in Sprague Dawley rats demonstrate zidovudine blood plasma concentrations within the half maximal inhibitory concentration (IC50 ) range (30-130 ng mL-1 ) for 35 days. This work is a proof-of-concept for the development of a long-acting combined injectable in situ forming peptide hydrogel implant. These products are imperative given their potential impact on society.
Collapse
Affiliation(s)
- Sophie M. Coulter
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Sreekanth Pentlavalli
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Lalitkumar K. Vora
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Yuming An
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Emily R. Cross
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Ke Peng
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Kate McAulay
- School of ChemistryUniversity of GlasgowJoseph Black BuildingGlasgowScotlandG12 8QQUK
- School of Computing, Engineering and Built EnvironmentGlasgow Caledonian UniversityGlasgowScotlandG4 0BAUK
| | - Ralf Schweins
- Large Scale Structures GroupInstitut Laue – Langevin71 Avenue des Martyrs, CS 20156Grenoble Cedex 938042France
| | - Ryan F. Donnelly
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Helen O. McCarthy
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| | - Garry Laverty
- School of PharmacyQueen's University BelfastMedical Biology Centre97 Lisburn RoadBelfast, Co. AntrimNorthern IrelandBT9 7BLUK
| |
Collapse
|
6
|
Harrison K, Mackay AS, Kambanis L, Maxwell JWC, Payne RJ. Synthesis and applications of mirror-image proteins. Nat Rev Chem 2023; 7:383-404. [PMID: 37173596 DOI: 10.1038/s41570-023-00493-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/15/2023]
Abstract
The homochirality of biomolecules in nature, such as DNA, RNA, peptides and proteins, has played a critical role in establishing and sustaining life on Earth. This chiral bias has also given synthetic chemists the opportunity to generate molecules with inverted chirality, unlocking valuable new properties and applications. Advances in the field of chemical protein synthesis have underpinned the generation of numerous 'mirror-image' proteins (those comprised entirely of D-amino acids instead of canonical L-amino acids), which cannot be accessed using recombinant expression technologies. This Review seeks to highlight recent work on synthetic mirror-image proteins, with a focus on modern synthetic strategies that have been leveraged to access these complex biomolecules as well as their applications in protein crystallography, drug discovery and the creation of mirror-image life.
Collapse
Affiliation(s)
- Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Lander AJ, Jin Y, Luk LYP. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chembiochem 2023; 24:e202200537. [PMID: 36278392 PMCID: PMC10805118 DOI: 10.1002/cbic.202200537] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.
Collapse
Affiliation(s)
- Alexander J. Lander
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Yi Jin
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
8
|
Stocks BB, Bird GH, Walensky LD, Melanson JE. Characterizing Native and Hydrocarbon-Stapled Enfuvirtide Conformations with Ion Mobility Mass Spectrometry and Hydrogen-Deuterium Exchange. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:753-761. [PMID: 33534566 DOI: 10.1021/jasms.0c00453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The number of approved peptide therapeutics, as well as those in development, has been increasing in recent years. Frequently, the biological activity of such peptides is elicited through the adoption of secondary structural elements upon interaction with their cellular target. However, many therapeutic peptides are unstructured in solution and accordingly exhibit a poor bioavailability due to rapid proteolysis in vivo. To combat this degradation, numerous naturally occurring peptides with therapeutic properties contain stabilizing features, such as N-to-C cyclization or disulfide bonds. Recently, hydrocarbon stapling via non-native amino acid substitution followed by ring-closing metathesis has been shown to induce a dramatic stabilization of α-helical peptides. Identifying the ideal staple location along the peptide backbone is a critical developmental step, and methods to streamline this optimization are needed. Mass spectrometry-based methods such as ion mobility (IM) and hydrogen-deuterium exchange (HDX) can detect multiple discrete peptide conformations, a significant advantage over bulk spectroscopic techniques. In this study we use IM-MS and HDX-MS to demonstrate that the native 36-residue enfuvirtide peptide is highly dynamic in solution and the conformational ensemble populated by stabilized constructs depends heavily on the staple location. Further, our measurements yielded results that correlate well with the average α-helical content measured by circular dichroism. The MS-based approaches described herein represent sensitive and potentially high-throughput methods for characterizing and identifying optimally stapled peptides.
Collapse
Affiliation(s)
- Bradley B Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Gregory H Bird
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Loren D Walensky
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Jeremy E Melanson
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
9
|
Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides to combat viral infectious diseases. Peptides 2020; 134:170402. [PMID: 32889022 PMCID: PMC7462603 DOI: 10.1016/j.peptides.2020.170402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Viral infectious diseases have resulted in millions of deaths throughout history and have created a significant public healthcare burden. Tremendous efforts have been placed by the scientific communities, health officials and government organizations to detect, treat, and prevent viral infection. However, the complicated life cycle and rapid genetic mutations of viruses demand continuous development of novel medicines with high efficacy and safety profiles. Peptides provide a promising outlook as a tool to combat the spread and re-emergence of viral infection. This article provides an overview of five viral infectious diseases with high global prevalence: influenza, chronic hepatitis B, acquired immunodeficiency syndrome, severe acute respiratory syndrome, and coronavirus disease 2019. The current and potential peptide-based therapies, vaccines, and diagnostics for each disease are discussed.
Collapse
Affiliation(s)
- Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
10
|
Nishimura Y, Francis JN, Donau OK, Jesteadt E, Sadjadpour R, Smith AR, Seaman MS, Welch BD, Martin MA, Kay MS. Prevention and treatment of SHIVAD8 infection in rhesus macaques by a potent d-peptide HIV entry inhibitor. Proc Natl Acad Sci U S A 2020; 117:22436-22442. [PMID: 32820072 PMCID: PMC7486783 DOI: 10.1073/pnas.2009700117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholesterol-PIE12-trimer (CPT31) is a potent d-peptide HIV entry inhibitor that targets the highly conserved gp41 N-peptide pocket region. CPT31 exhibited strong inhibitory breadth against diverse panels of primary virus isolates. In a simian-HIV chimeric virus AD8 (SHIVAD8) macaque model, CPT31 prevented infection from a single high-dose rectal challenge. In chronically infected animals, CPT31 monotherapy rapidly reduced viral load by ∼2 logs before rebound occurred due to the emergence of drug resistance. In chronically infected animals with viremia initially controlled by combination antiretroviral therapy (cART), CPT31 monotherapy prevented viral rebound after discontinuation of cART. These data establish CPT31 as a promising candidate for HIV prevention and treatment.
Collapse
Affiliation(s)
- Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - J Nicholas Francis
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
- Navigen, Inc., Salt Lake City, UT 84108
| | - Olivia K Donau
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Eric Jesteadt
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Reza Sadjadpour
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Amanda R Smith
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | | | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892;
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112;
| |
Collapse
|
11
|
Gomara MJ, Perez Y, Gomez-Gutierrez P, Herrera C, Ziprin P, Martinez JP, Meyerhans A, Perez JJ, Haro I. Importance of structure-based studies for the design of a novel HIV-1 inhibitor peptide. Sci Rep 2020; 10:14430. [PMID: 32879375 PMCID: PMC7468280 DOI: 10.1038/s41598-020-71404-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Based on the structure of an HIV-1 entry inhibitor peptide two stapled- and a retro-enantio peptides have been designed to provide novel prevention interventions against HIV transmission. The three peptides show greater inhibitory potencies in cellular and mucosal tissue pre-clinical models than the parent sequence and the retro-enantio shows a strengthened proteolytic stability. Since HIV-1 fusion inhibitor peptides need to be embedded in the membrane to properly interact with their viral target, the structural features were determined by NMR spectroscopy in micelles and solved by using restrained molecular dynamics calculations. Both parent and retro-enantio peptides demonstrate a topology compatible with a shared helix–turn–helix conformation and assemble similarly in the membrane maintaining the active conformation needed for its interaction with the viral target site. This study represents a straightforward approach to design new targeted peptides as HIV-1 fusion inhibitors and lead us to define a retro-enantio peptide as a good candidate for pre-exposure prophylaxis against HIV-1.
Collapse
Affiliation(s)
- María J Gomara
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - Yolanda Perez
- Nuclear Magnetic Resonance Facility, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Patricia Gomez-Gutierrez
- Department of Chemical Engineering (ETSEIB), Universitat Politecnica de Catalunya, Barcelona, Spain
| | | | - Paul Ziprin
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London, UK
| | - Javier P Martinez
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Juan J Perez
- Department of Chemical Engineering (ETSEIB), Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
12
|
Ladinsky MS, Gnanapragasam PN, Yang Z, West AP, Kay MS, Bjorkman PJ. Electron tomography visualization of HIV-1 fusion with target cells using fusion inhibitors to trap the pre-hairpin intermediate. eLife 2020; 9:58411. [PMID: 32697193 PMCID: PMC7394545 DOI: 10.7554/elife.58411] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Fusion of HIV-1 with the membrane of its target cell, an obligate first step in virus infectivity, is mediated by binding of the viral envelope (Env) spike protein to its receptors, CD4 and CCR5/CXCR4, on the cell surface. The process of viral fusion appears to be fast compared with viral egress and has not been visualized by EM. To capture fusion events, the process must be curtailed by trapping Env-receptor binding at an intermediate stage. We have used fusion inhibitors to trap HIV-1 virions attached to target cells by Envs in an extended pre-hairpin intermediate state. Electron tomography revealed HIV-1 virions bound to TZM-bl cells by 2–4 narrow spokes, with slightly more spokes present when evaluated with mutant virions that lacked the Env cytoplasmic tail. These results represent the first direct visualization of the hypothesized pre-hairpin intermediate of HIV-1 Env and improve our understanding of Env-mediated HIV-1 fusion and infection of host cells.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Priyanthi Np Gnanapragasam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
13
|
Smith AR, Weinstock MT, Siglin AE, Whitby FG, Francis JN, Hill CP, Eckert DM, Root MJ, Kay MS. Characterization of resistance to a potent D-peptide HIV entry inhibitor. Retrovirology 2019; 16:28. [PMID: 31640718 PMCID: PMC6805555 DOI: 10.1186/s12977-019-0489-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND PIE12-trimer is a highly potent D-peptide HIV-1 entry inhibitor that broadly targets group M isolates. It specifically binds the three identical conserved hydrophobic pockets at the base of the gp41 N-trimer with sub-femtomolar affinity. This extremely high affinity for the transiently exposed gp41 trimer provides a reserve of binding energy (resistance capacitor) to prevent the viral resistance pathway of stepwise accumulation of modest affinity-disrupting mutations. Such modest mutations would not affect PIE12-trimer potency and therefore not confer a selective advantage. Viral passaging in the presence of escalating PIE12-trimer concentrations ultimately selected for PIE12-trimer resistant populations, but required an extremely extended timeframe (> 1 year) in comparison to other entry inhibitors. Eventually, HIV developed resistance to PIE12-trimer by mutating Q577 in the gp41 pocket. RESULTS Using deep sequence analysis, we identified three mutations at Q577 (R, N and K) in our two PIE12-trimer resistant pools. Each point mutant is capable of conferring the majority of PIE12-trimer resistance seen in the polyclonal pools. Surface plasmon resonance studies demonstrated substantial affinity loss between PIE12-trimer and the Q577R-mutated gp41 pocket. A high-resolution X-ray crystal structure of PIE12 bound to the Q577R pocket revealed the loss of two hydrogen bonds, the repositioning of neighboring residues, and a small decrease in buried surface area. The Q577 mutations in an NL4-3 backbone decreased viral growth rates. Fitness was ultimately rescued in resistant viral pools by a suite of compensatory mutations in gp120 and gp41, of which we identified seven candidates from our sequencing data. CONCLUSIONS These data show that PIE12-trimer exhibits a high barrier to resistance, as extended passaging was required to develop resistant virus with normal growth rates. The primary resistance mutation, Q577R/N/K, found in the conserved gp41 pocket, substantially decreases inhibitor affinity but also damages viral fitness, and candidate compensatory mutations in gp160 have been identified.
Collapse
Affiliation(s)
- Amanda R. Smith
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Matthew T. Weinstock
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Amanda E. Siglin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - J. Nicholas Francis
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Debra M. Eckert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Michael S. Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
14
|
Conserved Residue Asn-145 in the C-Terminal Heptad Repeat Region of HIV-1 gp41 is Critical for Viral Fusion and Regulates the Antiviral Activity of Fusion Inhibitors. Viruses 2019; 11:v11070609. [PMID: 31277353 PMCID: PMC6669600 DOI: 10.3390/v11070609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Entry of HIV-1 into target cells is mediated by its envelope (Env) glycoprotein composed of the receptor binding subunit gp120 and the fusion protein gp41. Refolding of the gp41 N- and C-terminal heptad repeats (NHR and CHR) into a six-helix bundle (6-HB) conformation drives the viral and cellular membranes in close apposition and generates huge amounts of energy to overcome the kinetic barrier leading to membrane fusion. In this study, we focused on characterizing the structural and functional properties of a single Asn-145 residue, which locates at the middle CHR site of gp41 and is extremely conserved among all the HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. By mutational analysis, we found that Asn-145 plays critical roles for Env-mediated cell-cell fusion and HIV-1 entry. As determined by circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC), the substitution of Asn-145 with alanine (N145A) severely impaired the interactions between the NHR and CHR helices. Asn-145 was also verified to be important for the antiviral activity of CHR-derived peptide fusion inhibitors and served as a turn-point for the inhibitory potency. Intriguingly, Asn-145 could regulate the functionality of the M-T hook structure at the N-terminus of the inhibitors and displayed comparable activities with the C-terminal IDL anchor. Crystallographic studies further demonstrated the importance of Asn-145-mediated interhelical and intrahelical interactions in the 6-HB structure. Combined, the present results have provided valuable information for the structure-function relationship of HIV-1 gp41 and the structure-activity relationship of gp41-dependent fusion inhibitors.
Collapse
|