1
|
Feng J, Dang H, Zhang X, Huang W, Ma C, Zhang A, Hao M, Xie L. A universal gene expression signature-based strategy for the high-throughput discovery of anti-inflammatory drugs. Inflamm Res 2025; 74:2. [PMID: 39762416 PMCID: PMC11703948 DOI: 10.1007/s00011-024-01968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is a valuable resource for drug discovery and has demonstrated excellent efficacy in treating inflammatory diseases. This study aimed to develop a universal gene signature-based strategy for high-throughput discovery of anti-inflammatory drugs, especially Traditional Chinese medicine (TCM). METHODS The disease gene signature of liposaccharide-stimulated THP-1 cells and drug gene signatures of 655 drug candidates were established via sequencing. Anti-inflammatory drugs were screened based on similarities between drug gene signatures and the reversed disease gene signature. RESULTS Through screening, 83 potential anti-inflammatory drugs were identified. The efficacy of the TCM formula Biyun Powder, along with individual TCMs, Centipedea Herba, Kaempferiae Rhizoma, and Schizonepetae Spica Carbonisata, was verified in vitro or in vivo. Mechanistically, they exerted anti-inflammatory effects by inhibiting the nuclear factor-kappa B pathway. Kaempferol and luteolin were identified as bioactive IκB kinase-β inhibitors in Kaempferiae Rhizoma and Schizonepetae Spica Carbonisata, respectively. CONCLUSION We developed a universal gene signature-based approach for the high-throughput discovery of anti-inflammatory drugs that is applicable to compounds and to TCM herbs/formulae and established a workflow (screening, validation of efficacy, and identification of the mechanism of action and bioactive compounds) that can serve as a research template for high-throughput drug research.
Collapse
Affiliation(s)
- Juan Feng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Honglei Dang
- Beijing CapitalBio Pharma Co., Ltd, Beijing, 102206, China
| | - Xiaoling Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Aixiang Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Mimi Hao
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
| |
Collapse
|
2
|
Song WF, Wang RJ, Yao RX, Jiang QY, Feng J, Luo K, Di ZH, Ma CM, Xie L. Pulsatilla chinensis functions as a novel antihyperlipidemic agent by upregulating LDLR in an ERK-dependent manner. Chin Med 2024; 19:172. [PMID: 39696673 DOI: 10.1186/s13020-024-01044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulsatilla chinensis (PC) is a traditional Chinese medicine (TCM) known for its beneficial activities. It has been historically used to treat dysentery, vaginal trichomoniasis, bacterial infections, and malignant tumors. The therapeutic potential of PC in the management of hypercholesterolemia remains largely unexplored. METHODS A high-throughput screening based on high-throughput sequencing was conducted in HepG2 cells to construct gene expression profiles for several hundred TCMs. In vivo evaluation of the efficacy of PC was performed using rats with hypercholesterolemia. Transcriptome analysis was carried out on PC-treated rat livers and HepG2 cells to investigate the mechanism of action of PC in vitro. The findings were further validated using RT-qPCR and western blot techniques. RESULTS PC was identified as similar to Rhizoma Coptidis based on signature genes related to metabolism. Administration of PC via gavage in rats with hypercholesterolemia for 11 weeks resulted in substantially reduced serum total cholesterol and low-density lipoprotein (LDL) cholesterol and ameliorated fatty liver. Transcriptome analysis revealed that PC regulated various pathways associated with lipid metabolism. The LDL receptor (LDLR), a key player in cholesterol metabolism, was upregulated by PC both in vivo and in vitro. It was discovered that PC achieved this upregulation by activating extracellular regulated protein kinase (ERK) signaling in HepG2 cells. To uncover the major bioactive components responsible for the anti- hypercholesterolemia effect of PC, two major saponins, named Pulsatilla saponin D (PCD) and PC anemoside B4 (PCB4), were assessed. PCD, but not PCB4, was identified as the active ingredient responsible for the upregulation of LDLR by PC. CONCLUSION These findings demonstrated that PC acts as an antihypercholesterolemic agent by upregulating LDLR in an ERK-dependent manner and holds potential in the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Wei-Fang Song
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Rui-Jun Wang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Rui-Xin Yao
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Qiu-Yan Jiang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Juan Feng
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Kun Luo
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Zheng-Han Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Cheng-Mei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Lan Xie
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
| |
Collapse
|
3
|
A transcriptome-based analysis reveals functional differences among Dendrobium officinale Kimura & Migo species from different growing regions and with different quality levels. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
5
|
Wang W, Zhu S, Chen H, Wu N, Chen H, Wang D. Development and Validation of Ultrahigh-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry Method for Quantitative Determination of Ten Active Compounds in Ge-Gen-Jiao-Tai-Wan. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:4713799. [PMID: 35441054 PMCID: PMC9013549 DOI: 10.1155/2022/4713799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 05/05/2023]
Abstract
A rapid, accurate, and sensitive method for the simultaneous determination of 10 main components, namely puerarin, daidzin, coptisine, epiberberine, jatrorrhizine, berberine, palmatine, coumarin, daidzein, and cinnamic acid in Ge-Gen-Jiao-Tai-Wan, was developed based on ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Analysis was performed on an Agilent 1290 Infinity II series UHPLC system, equipped with a Waters ACQUITY UPLC HSS T3 column (100 × 2.1 mm, 1.8 μm) by using (A) 0.1% acetic acid and (B) methanol as mobile phase. The flow rate was 0.3 mL/min, and the injection volume was 1 μL. Mass spectrometry was operated in multiple reaction monitoring mode using an Agilent 6460 triple quadrupole mass spectrometer equipped with an AJS-ESI ion source. Agilent Mass Hunter Work Station Software was employed for data acquisition and processing. All calibration curves showed excellent linear regressions (R 2 > 0.9992). The precision, repeatability, and stability of the ten compounds were below 4.56% in terms of relative standard deviation. The average extraction recovery ranged from 96.53% to 102.69% with a relative standard deviation of 1.14-3.78% for all samples. This study potently contributes to the quantitative evaluation of Ge-Gen-Jiao-Tai-Wan, thereby providing a scientific basis for further studies and clinical application of Ge-Gen-Jiao-Tai-Wan.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuangquan Zhu
- Department of Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Hao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ning Wu
- Changsha Social Work College, Changsha 410116, China
| | - Han Chen
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Xie L, Feng S, Zhang X, Zhao W, Feng J, Ma C, Wang R, Song W, Cheng J. Biological Response Profiling Reveals the Functional Differences of Main Alkaloids in Rhizoma Coptidis. Molecules 2021; 26:molecules26237389. [PMID: 34885971 PMCID: PMC8658997 DOI: 10.3390/molecules26237389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Rhizoma Coptidis (RC) is a widely used traditional Chinese medicine. Although modern research has found that some alkaloids from RC are the pharmacologically active constituents, the differences in their biological effects are not completely clear. This study analyzed the differences in the typical alkaloids in RC at a systematic level and provided comprehensive information on the pharmaceutical mechanisms of the different alkaloids. The ethanol RC extract (RCE) was characterized using HPLC assay. HepG2, 3T3-L1, and RAW264.7 cells were used to detect the cytotoxicity of alkaloids. Transcriptome analyses were performed to elucidate the cellular pathways affected by RCE and alkaloids. HPLC analysis revealed that the typical alkaloids of RCE were berberine, coptisine, and palmatine. Coptisine and berberine displayed a stronger inhibitory effect on cell proliferation than palmatine. The overlapping ratios of differentially expressed genes between RCE and berberine, coptisine, and palmatine were 70.8%, 52.6%, and 42.1%, respectively. Pathway clustering analysis indicated that berberine and coptisine possessed a certain similarity to RCE, and both compounds affected the cell cycle pathway; moreover, some pathways were uniquely enriched by berberine or coptisine. Berberine and coptisine had different regulatory effects on genes involved in lipid metabolism. These results provide comprehensive information on the pharmaceutical mechanisms of the different RC alkaloids and insights into their better combinatory use for the treatment of diseases.
Collapse
Affiliation(s)
- Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Shanshan Feng
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Xiaoling Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Wenlong Zhao
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Juan Feng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Ruijun Wang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang 032200, China; (R.W.); (W.S.)
| | - Weifang Song
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang 032200, China; (R.W.); (W.S.)
| | - Jing Cheng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
- Correspondence:
| |
Collapse
|