1
|
Yadav J, Maldonato BJ, Roesner JM, Vergara AG, Paragas EM, Aliwarga T, Humphreys S. Enzyme-mediated drug-drug interactions: a review of in vivo and in vitro methodologies, regulatory guidance, and translation to the clinic. Drug Metab Rev 2024:1-33. [PMID: 39057923 DOI: 10.1080/03602532.2024.2381021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Enzyme-mediated pharmacokinetic drug-drug interactions can be caused by altered activity of drug metabolizing enzymes in the presence of a perpetrator drug, mostly via inhibition or induction. We identified a gap in the literature for a state-of-the art detailed overview assessing this type of DDI risk in the context of drug development. This manuscript discusses in vitro and in vivo methodologies employed during the drug discovery and development process to predict clinical enzyme-mediated DDIs, including the determination of clearance pathways, metabolic enzyme contribution, and the mechanisms and kinetics of enzyme inhibition and induction. We discuss regulatory guidance and highlight the utility of in silico physiologically-based pharmacokinetic modeling, an approach that continues to gain application and traction in support of regulatory filings. Looking to the future, we consider DDI risk assessment for targeted protein degraders, an emerging small molecule modality, which does not have recommended guidelines for DDI evaluation. Our goal in writing this report was to provide early-career researchers with a comprehensive view of the enzyme-mediated pharmacokinetic DDI landscape to aid their drug development efforts.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Joseph M Roesner
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Sara Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
2
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
3
|
Krohmer E, Rohr BS, Stoll F, Gümüs KS, Bergamino M, Mikus G, Sauter M, Burhenne J, Weiss J, Meid AD, Czock D, Blank A, Haefeli WE. Influence of a Short Course of Ritonavir Used as Booster in Antiviral Therapies Against SARS-CoV-2 on the Exposure of Atorvastatin and Rosuvastatin. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07538-w. [PMID: 38112932 DOI: 10.1007/s10557-023-07538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Early antiviral treatment with nirmatrelvir/ritonavir is recommended for SARS-CoV-2-infected patients at high risk for severe courses. Such patients are usually chronically ill and susceptible to adverse drug interactions caused by ritonavir. We investigated the interactions of short-term low-dose ritonavir therapy with atorvastatin and rosuvastatin, two statins commonly used in this population. METHOD We assessed exposure changes (area under the concentration-time curve (AUC∞) and maximum concentration (Cmax)) of a single dose of 10 mg atorvastatin and 10 mg rosuvastatin before and on the fifth day of ritonavir treatment (2 × 100 mg/day) in healthy volunteers and developed a semi-mechanistic pharmacokinetic model to estimate dose adjustment of atorvastatin during ritonavir treatment. RESULTS By the fifth day of ritonavir treatment, the AUC∞ of atorvastatin increased 4.76-fold and Cmax 3.78-fold, and concurrently, the concentration of atorvastatin metabolites decreased to values below the lower limit of quantification. Pharmacokinetic modelling indicated that a stepwise reduction in atorvastatin dose during ritonavir treatment with a stepwise increase up to 4 days after ritonavir discontinuation can keep atorvastatin exposure within safe and effective margins. Rosuvastatin pharmacokinetics were only mildly modified; ritonavir significantly increased the Cmax 1.94-fold, while AUC∞ was unchanged. CONCLUSION Atorvastatin doses should likely be adjusted during nirmatrelvir/ritonavir treatment. For patients on a 20-mg dose, we recommend half of the original dose. In patients taking 40 mg or more, a quarter of the dose should be taken until 2 days after discontinuation of nirmatrelvir/ritonavir. Patients receiving rosuvastatin do not need to change their treatment regimen. TRIAL REGISTRATION EudraCT number: 2021-006634-39. DRKS00027838.
Collapse
Affiliation(s)
- Evelyn Krohmer
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Brit Silja Rohr
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Felicitas Stoll
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Katja S Gümüs
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Mariano Bergamino
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Medical Faculty of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Paudel S, Jo H, Lee T, Lee S. Selective inhibitory effects of suberosin on CYP1A2 in human liver microsomes. Biopharm Drug Dispos 2023; 44:365-371. [PMID: 37448189 DOI: 10.1002/bdd.2370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Suberosin is a natural phytoconstituent isolated from Citropsis articulata, especially employed for its anticoagulant properties. Although metabolic studies assessing suberosin have been conducted, it is possible interactions with drugs and food have not yet been investigated. In the present study, we analyzed the selective inhibitory effects of suberosin on cytochrome P450 (CYP) enzymes using a cocktail probe assay. Various concentrations of suberosin (0-50 μM) were incubated with isoform-specific CYP probes in human liver microsomes (HLMs). We found that suberosin significantly inhibited CYP1A2-catalyzed phenacetin O-deethylation, exhibiting IC50 values of 9.39 ± 2.05 and 3.07 ± 0.45 μM with and without preincubation in the presence of β-NADPH, respectively. Moreover, suberosin showed concentration-dependent, but not time-dependent, CYP1A2 inhibition in HLMs, indicating that suberosin acts as a substrate and reversible CYP1A2 inhibitor. Using a Lineweaver-Burk plot, we found that suberosin competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation. Furthermore, suberosin showed similar inhibitory effects on recombinant human CYP1A1 and 1A2. In conclusion, suberosin may elicit herb-drug interactions by selectively inhibiting CYP1A2 during the concurrent administration of drugs that act as CYP1A2 substrates.
Collapse
Affiliation(s)
- Sanjita Paudel
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Hyoje Jo
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Taeho Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Zhang M, Lei Z, Yu Z, Yao X, Li H, Xu M, Liu D. Development of a PBPK model to quantitatively understand absorption and disposition mechanism and support future clinical trials for PB-201. CPT Pharmacometrics Syst Pharmacol 2023; 12:941-952. [PMID: 37078371 PMCID: PMC10349193 DOI: 10.1002/psp4.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
PB-201 is the second glucokinase activator in the world to enter the phase III clinical trials for the treatment of type 2 diabetes mellitus (T2DM). Combined with the efficacy advantages and the friendly absorption, distribution, metabolism, and excretion characteristics, the indication population of PB-201 will be broad. Because the liver is the primary organ for PB-201 elimination, and the elderly account for 20% of patients with T2DM, it is essential to estimate PB-201 exposure in specific populations to understand the pharmacokinetic characteristics and avoid hypoglycemia. Despite the limited contribution of CYP3A4 to PB-201 metabolism in vivo, the dual effects of nonspecific inhibitors/inducers on PB-201 (substrate for CYP3A4 and CYP2C9 isoenzymes) exposure under fasted and fed states also need to be evaluated to understand potential risks of combination therapy. To grasp the unknown information, the physiologically-based pharmacokinetic (PBPK) model was first developed and the influence of internal and external factors on PB-201 exposure was evaluated. Results are shown that the predictive performance of the mechanistic PBPK model meets the predefined criteria, and can accurately capture the absorption and disposition characteristics. Impaired liver function and age-induced changes in physiological factors may significantly increase the exposure under fasted state by 36%-158% and 48%-82%, respectively. The nonspecific inhibitor (fluconazole) and inducer (rifampicin) may separately increase/decrease PB-201 systemic exposure by 44% and 58% under fasted state, and by 78% and 47% under fed state. Therefore, the influence of internal and external factors on PB-201 exposure deserves attention, and the precision dose can be informed in future clinical studies based on the predicted results.
Collapse
Affiliation(s)
- Miao Zhang
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Zihan Lei
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
| | - Ziheng Yu
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Xueting Yao
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
| | - Haiyan Li
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
- Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Min Xu
- PegBio Co., Ltd.SuzhouJiangsuChina
| | - Dongyang Liu
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
| |
Collapse
|
6
|
Loos NH, Beijnen JH, Schinkel AH. The inhibitory and inducing effects of ritonavir on hepatic and intestinal CYP3A and other drug-handling proteins. Biomed Pharmacother 2023; 162:114636. [PMID: 37004323 PMCID: PMC10065864 DOI: 10.1016/j.biopha.2023.114636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Ritonavir, originally developed as HIV protease inhibitor, is widely used as a booster in several HIV pharmacotherapy regimens and more recently in Covid-19 treatment (e.g., Paxlovid). Its boosting capacity is due to the highly potent irreversible inhibition of the cytochrome P450 (CYP) 3 A enzyme, thereby enhancing the plasma exposure to coadministered drugs metabolized by CYP3A. Typically used booster doses of ritonavir are 100-200 mg once or twice daily. This review aims to address several aspects of this booster drug, including the possibility to use lower ritonavir doses, 20 mg for instance, resulting in partial CYP3A inactivation in patients. If complete CYP3A inhibition is not needed, lower ritonavir doses could be used, thereby reducing unwanted side effects. In this context, there are contradictory reports on the actual recovery time of CYP3A activity after ritonavir discontinuation, but probably this will take at least one day. In addition to ritonavir's CYP3A inhibitory effect, it can also induce and/or inhibit other CYP enzymes and drug transporters, albeit to a lesser extent. Although ritonavir thus exhibits gene induction capacities, with respect to CYP3A activity the inhibition capacity clearly predominates. Another potent CYP3A inhibitor, the ritonavir analog cobicistat, has been reported to lack the ability to induce enzyme and transporter genes. This might result in a more favorable drug-drug interaction profile compared to ritonavir, although the actual benefit appears to be limited. Indeed, ritonavir is still the clinically most used pharmacokinetic enhancer, indicating that its side effects are well manageable, even in chronic administration regimens.
Collapse
|
7
|
Zhang M, Yu Z, Yao X, Lei Z, Zhao K, Wang W, Zhang X, Chen X, Liu D. Prediction of pyrotinib exposure based on physiologically-based pharmacokinetic model and endogenous biomarker. Front Pharmacol 2022; 13:972411. [PMID: 36210839 PMCID: PMC9543720 DOI: 10.3389/fphar.2022.972411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Pyrotinib, a novel irreversible epidermal growth factor receptor dual tyrosine kinase inhibitor, is mainly (about 90%) eliminated through cytochrome P450 (CYP) 3A mediated metabolism in vivo. Meanwhile, genotype is a key factor affecting pyrotinib clearance and 4β-hydroxycholesterol is an endogenous biomarker of CYP3A activity that can indirectly reflect the possible pyrotinib exposure. Thus, it is necessary to evaluate the clinical drug-drug interactions (DDI) between CYP3A perpetrators and pyrotinib, understand potential exposure in specific populations including liver impairment and geriatric populations, and explore the possible relationships among pyrotinib exposure, genotypes and endogenous biomarker. Physiologically-based pharmacokinetic (PBPK) model can be used to replace prospective DDI studies and evaluate external and internal factors that may influence system exposure. Herein, a basic PBPK model was firstly developed to evaluate the potential risk of pyrotinib coadministration with strong inhibitor and guide the clinical trial design. Subsequently, the mechanistic PBPK model was established and used to quantitatively estimate the potential DDI risk for other CYP3A modulators, understand the potential exposure of specific populations, including liver impairment and geriatric populations. Meanwhile, the possible relationships among pyrotinib exposure, genotypes and endogenous biomarker were explored. With the help of PBPK model, the DDI clinical trial of pyrotinib coadministration with strong inhibitor has been successfully completed, some DDI clinical trials may be waived based on the predicted results and clinical trials in specific populations can be reasonably designed. Moreover, the mutant genotypes of CYP3A4*18A and CYP3A5*3 were likely to have a limited influence on pyrotinib clearance, and the genotype-independent linear correlation coefficient between endogenous biomarker and system exposure was larger than 0.6. Therefore, based on the reliable predicted results and the linear correlations between pyrotinib exposure and endogenous biomarker, dosage adjustment of pyrotinib can be designed for clinical practice.
Collapse
Affiliation(s)
- Miao Zhang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Institute of Medical Innovation, Peking University Third Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiheng Yu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Institute of Medical Innovation, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xueting Yao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Institute of Medical Innovation, Peking University Third Hospital, Beijing, China
| | - Zihan Lei
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Institute of Medical Innovation, Peking University Third Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kaijing Zhao
- Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Wenqian Wang
- Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Xue Zhang
- Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Xijing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Institute of Medical Innovation, Peking University Third Hospital, Beijing, China
- *Correspondence: Dongyang Liu,
| |
Collapse
|
8
|
Loos NHC, Beijnen JH, Schinkel AH. The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism? Int J Mol Sci 2022; 23:ijms23179866. [PMID: 36077262 PMCID: PMC9456214 DOI: 10.3390/ijms23179866] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ritonavir is the most potent cytochrome P450 (CYP) 3A4 inhibitor in clinical use and is often applied as a booster for drugs with low oral bioavailability due to CYP3A4-mediated biotransformation, as in the treatment of HIV (e.g., lopinavir/ritonavir) and more recently COVID-19 (Paxlovid or nirmatrelvir/ritonavir). Despite its clinical importance, the exact mechanism of ritonavir-mediated CYP3A4 inactivation is still not fully understood. Nonetheless, ritonavir is clearly a potent mechanism-based inactivator, which irreversibly blocks CYP3A4. Here, we discuss four fundamentally different mechanisms proposed for this irreversible inactivation/inhibition, namely the (I) formation of a metabolic-intermediate complex (MIC), tightly coordinating to the heme group; (II) strong ligation of unmodified ritonavir to the heme iron; (III) heme destruction; and (IV) covalent attachment of a reactive ritonavir intermediate to the CYP3A4 apoprotein. Ritonavir further appears to inactivate CYP3A4 and CYP3A5 with similar potency, which is important since ritonavir is applied in patients of all ethnicities. Although it is currently not possible to conclude what the primary mechanism of action in vivo is, it is unlikely that any of the proposed mechanisms are fundamentally wrong. We, therefore, propose that ritonavir markedly inactivates CYP3A through a mixed set of mechanisms. This functional redundancy may well contribute to its overall inhibitory efficacy.
Collapse
Affiliation(s)
- Nancy H. C. Loos
- The Netherlands Cancer Institute, Division of Pharmacology, 1066 CX Amsterdam, The Netherlands
| | - Jos H. Beijnen
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, 3584 CS Utrecht, The Netherlands
- The Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, 1066 CX Amsterdam, The Netherlands
| | - Alfred H. Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-205122046
| |
Collapse
|
9
|
Wen HN, He QF, Xiang XQ, Jiao Z, Yu JG. Predicting drug-drug interactions with physiologically based pharmacokinetic/pharmacodynamic modelling and optimal dosing of apixaban and rivaroxaban with dronedarone co-administration. Thromb Res 2022; 218:24-34. [PMID: 35985100 DOI: 10.1016/j.thromres.2022.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND The concurrent administration of dronedarone and oral anti-coagulants is common because both are used in managing atrial fibrillation (AF). Dronedarone is a moderate inhibitor of the cytochrome P450 3A4 (CYP3A4) enzyme and P-glycoprotein (P-gp). Apixaban and rivaroxaban are P-gp and CYP3A4 substrates. This study aims to investigate the impact of exposure and bleeding risk of apixaban or rivaroxaban when co-administered with dronedarone using physiologically based pharmacokinetic/pharmacodynamic analysis. METHODS Modeling and simulation were conducted using Simcyp® Simulator. The parameters required for dronedarone modeling were collected from the literature. The developed dronedarone physiologically based pharmacokinetic (PBPK) model was verified using reported drug-drug interactions (DDIs) between dronedarone and CYP3A4 and P-gp substrates. The model was applied to evaluate the DDI potential of dronedarone on the exposure of apixaban 5 mg every 12 h or rivaroxaban 20 mg every 24 h in geriatric and renally impaired populations. DDIs precipitating major bleeding risks were assessed using exposure-response analyses derived from literature. RESULTS The model accurately described the pharmacokinetics of orally administered dronedarone in healthy subjects and accurately predicted DDIs between dronedarone and four CYP3A4 and P-gp substrates with fold errors <1.5. Dronedarone co-administration led to a 1.29 (90 % confidence interval (CI): 1.14-1.50) to 1.31 (90 % CI: 1.12-1.46)-fold increase in the area under concentration-time curve for rivaroxaban and 1.33 (90 % CI: 1.15-1.68) to 1.46 (90 % CI: 1.24-1.92)-fold increase for apixaban. The PD model indicated that dronedarone co-administration might potentiate the mean major bleeding risk of apixaban with a 1.45 to 1.95-fold increase. However, the mean major bleeding risk of rivaroxaban was increased by <1.5-fold in patients with normal or impaired renal function. CONCLUSIONS Dronedarone co-administration increased the exposure of rivaroxaban and apixaban and might potentiate major bleeding risks. Reduced apixaban and rivaroxaban dosing regimens are recommended when dronedarone is co-administered to patients with AF.
Collapse
Affiliation(s)
- Hai-Ni Wen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing-Feng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Xiao-Qiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, PR China.
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
10
|
Maldonato BJ, Vergara AG, Yadav J, Glass SM, Paragas EM, Li D, Lazarus P, McClay JL, Ning B, Daly AK, Russell LE. Epigenetics in drug disposition & drug therapy: symposium report of the 24 th North American meeting of the International Society for the Study of Xenobiotics (ISSX). Drug Metab Rev 2022; 54:318-330. [PMID: 35876105 PMCID: PMC9970013 DOI: 10.1080/03602532.2022.2101662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
The 24th North American International Society for the Study of Xenobiotics (ISSX) meeting, held virtually from September 13 to 17, 2021, embraced the theme of "Broadening Our Horizons." This reinforces a key mission of ISSX: striving to share innovative science related to drug discovery and development. Session speakers and the ISSX New Investigators Group, which supports the scientific and professional development of student and early career ISSX members, elected to highlight the scientific content presented during the captivating session titled, "Epigenetics in Drug Disposition & Drug Therapy." The impact genetic variation has on drug response is well established; however, this session underscored the importance of investigating the role of epigenetics in drug disposition and drug discovery. Session speakers, Drs. Ning, McClay, and Lazarus, detailed mechanisms by which epigenetic players including long non-coding RNA (lncRNAs), microRNA (miRNAs), DNA methylation, and histone acetylation can alter the expression of genes involved in pharmacokinetics, pharmacodynamics, and toxicity. Dr. Ning detailed current knowledge about miRNAs and lncRNAs and the mechanisms by which they can affect the expression of drug metabolizing enzymes (DMEs) and nuclear receptors. Dr. Lazarus discussed the potential role of miRNAs on UDP-glucuronosyltransferase (UGT) expression and activity. Dr. McClay provided evidence that aging alters methylation and acetylation of DMEs in the liver, affecting gene expression and activity. These topics, compiled by the symposium organizers, presenters, and the ISSX New Investigators Group, are herein discussed, along with exciting future perspectives for epigenetics in drug disposition and drug discovery research.
Collapse
Affiliation(s)
- Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, United States
| | - Ana G Vergara
- Department of ADME & Discovery Toxicology, Merck & Co., Inc, Rahway, NJ, United States
| | - Jaydeep Yadav
- Department of ADME & Discovery Toxicology, Merck & Co., Inc, Rahway, NJ, United States
| | - Sarah M Glass
- Janssen Research & Development, San Diego, CA, United States
| | | | - Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, United States
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, United States
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura E Russell
- Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, Illinois, United States
| |
Collapse
|
11
|
Korzekwa K, Yadav J, Nagar S. Using Partition Analysis as a Facile Method to Derive Net Clearances. Clin Transl Sci 2022; 15:1867-1879. [PMID: 35579201 PMCID: PMC9372430 DOI: 10.1111/cts.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
Partition analysis has been described previously by W.W. Cleland to derive net rate constants and simplify the derivation of enzyme kinetic equations. Here, we show that partition analysis can be used to derive elimination and transfer (distribution) net clearances for use in pharmacokinetic models. For elimination clearances, the net clearance approach is exemplified with a mammillary two‐compartment model with peripheral elimination, and the established well‐stirred and full hepatic clearance models. The intrinsic hepatic clearance associated with an observed average hepatic clearance can be easily calculated with net clearances. Expressions for net transfer clearances are easily derived, including models with explicit membranes (e.g., monolayer permeability and blood–brain barrier models). Together, these approaches can be used to derive equations for physiologically based and hybrid compartmental/ physiologically based models. This tutorial describes how net clearances can be used to derive relationships for simple models as well as increasingly complex models, such as inclusion of active transport and target mediated processes.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, PA 19140, Philadelphia
| | - Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University, PA 19140, Philadelphia.,Current Address: Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, PA 19140, Philadelphia
| |
Collapse
|
12
|
Paragas EM, Wang Z, Korzekwa K, Nagar S. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 2. Modeling of Experimental Data. Drug Metab Dispos 2021; 49:1100-1108. [PMID: 34503953 PMCID: PMC11022889 DOI: 10.1124/dmd.121.000554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Three CYP3A4 substrates, midazolam, ticlopidine, and diazepam, display non-Michaelis-Menten kinetics, form multiple primary metabolites, and are sequentially metabolized to secondary metabolites. We generated saturation curves for these compounds and analyzed the resulting datasets using a number of single-substrate and multisubstrate binding models. These models were parameterized using rate equations and numerical solutions of the ordinary differential equations. Multisubstrate binding models provided results superior to single-substrate models, and simultaneous modeling of multiple metabolites provided better results than fitting the individual datasets independently. Although midazolam datasets could be represented using standard two-substrate models, more complex models that include explicit enzyme-product complexes were needed to model the datasets for ticlopidine and diazepam. In vivo clearance predictions improved markedly with the use of in vitro parameters from the complex models versus the Michaelis-Menten equation. The results highlight the need to use sufficiently complex kinetic schemes instead of the Michaelis-Menten equation to generate accurate kinetic parameters. SIGNIFICANCE STATEMENT: The metabolism of midazolam, ticlopidine, and diazepam by CYP3A4 results in multiple metabolites and sequential metabolism. This study evaluates the use of rate equations and numerical methods to characterize the in vitro enzyme kinetics. Use of complex cytochrome P450 kinetic models is necessary to obtain accurate parameter estimates for predicting in vivo disposition.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Zeyuan Wang
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Wang Z, Paragas EM, Nagar S, Korzekwa K. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 1. Theoretical Considerations. Drug Metab Dispos 2021; 49:1090-1099. [PMID: 34503952 PMCID: PMC11022900 DOI: 10.1124/dmd.121.000553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Complexities in P450-mediated metabolism kinetics include multisubstrate binding, multiple-product formation, and sequential metabolism. Saturation curves and intrinsic clearances were simulated for single-substrate and multisubstrate models using derived velocity equations and numerical solutions of ordinary differential equations (ODEs). Multisubstrate models focused on sigmoidal kinetics because of their dramatic impact on clearance predictions. These models were combined with multiple-product formation and sequential metabolism, and simulations were performed with random error. Use of single-substrate models to characterize multisubstrate data can result in inaccurate kinetic parameters and poor clearance predictions. Comparing results for use of standard velocity equations with ODEs clearly shows that ODEs are more versatile and provide better parameter estimates. It would be difficult to derive concentration-velocity relationships for complex models, but these relationships can be easily modeled using numerical methods and ODEs. SIGNIFICANCE STATEMENT: The impact of multisubstrate binding, multiple-product formation, and sequential metabolism on the P450 kinetics was investigated. Numerical methods are capable of characterizing complicated P450 kinetics.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Tseng E, Eng H, Lin J, Cerny MA, Tess DA, Goosen TC, Obach RS. Static and Dynamic Projections of Drug-Drug Interactions Caused by Cytochrome P450 3A Time-Dependent Inhibitors Measured in Human Liver Microsomes and Hepatocytes. Drug Metab Dispos 2021; 49:947-960. [PMID: 34326140 DOI: 10.1124/dmd.121.000497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 3A (CYP3A) is a frequent target for time-dependent inhibition (TDI) that can give rise to drug-drug interactions (DDI). Yet many drugs that exhibit in vitro TDI for CYP3A, do not result in DDI. Twenty-three drugs with published clinical DDI were evaluated for CYP3A TDI in human liver microsomes (HLM) and hepatocytes (HHEP), and these data were utilized in static and dynamic models for projecting DDI caused by inactivation of CYP3A in both liver and intestine. TDI parameters measured in HHEP, particularly kinact, were generally lower than those measured in HLM. In static models, the use of average unbound organ exit concentrations offered the most accurate projections of DDI with geometric mean fold errors of 2.2 and 1.7 for HLM and HHEP, respectively. Use of maximum organ entry concentrations yielded marked overestimates of DDI. When evaluated in a binary fashion (i.e. projection of DDI of 1.25-fold or greater), data from HLM offered the greatest sensitivity (100%) and specificity (42%) and yielded no missed DDI when average unbound organ exit concentrations were used. In dynamic physiologically-based pharmacokinetic modeling, accurate projections of DDI were obtained with geometric mean fold errors of 1.7 and 1.6 for HLM and HHEP, respectively. Sensitivity and specificity were 100% and 67% when using TDI data generated in HLM and Simcyp modeling. Overall, DDI caused by CYP3A-mediated TDI can be reliably projected using dynamic or static models. For static models, average organ unbound exit concentrations must be used as input values otherwise DDI will be markedly overestimated. Significance Statement CYP3A time-dependent inhibitors are important in design and development of new drugs. The prevalence of CYP3A TDI is high among newly synthesized drug candidates and understanding the potential need for running clinical DDI studies is essential during drug development. Ability to reliably predict DDI caused by CYP3A TDI has been difficult to achieve. We report a thorough evaluation of CYP3A TDI and demonstrate that DDI can be predicted when using appropriate models and input parameters generated in HLM or HHEP.
Collapse
Affiliation(s)
- Elaine Tseng
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, United States
| | - Heather Eng
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, United States
| | | | | | | | - Theunis C Goosen
- Pharmacokinetics, Dynamics & Metabolism, Pfizer, Inc, United States
| | - R Scott Obach
- Groton Laboratories, Pfizer Global Research and Development, United States
| |
Collapse
|
15
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
16
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
17
|
Tanna RS, Tian DD, Cech NB, Oberlies NH, Rettie AE, Thummel KE, Paine MF. Refined Prediction of Pharmacokinetic Kratom-Drug Interactions: Time-Dependent Inhibition Considerations. J Pharmacol Exp Ther 2020; 376:64-73. [PMID: 33093187 DOI: 10.1124/jpet.120.000270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Preparations from the leaves of the kratom plant (Mitragyna speciosa) are consumed for their opioid-like effects. Several deaths have been associated with kratom used concomitantly with some drugs. Pharmacokinetic interactions are potential underlying mechanisms of these fatalities. Accumulating in vitro evidence has demonstrated select kratom alkaloids, including the abundant indole alkaloid mitragynine, as reversible inhibitors of several cytochromes P450 (CYPs). The objective of this work was to refine the mechanistic understanding of potential kratom-drug interactions by considering both reversible and time-dependent inhibition (TDI) of CYPs in the liver and intestine. Mitragynine was tested against CYP2C9 (diclofenac 4'-hydroxylation), CYP2D6 (dextromethorphan O-demethylation), and CYP3A (midazolam 1'-hydroxylation) activities in human liver microsomes (HLMs) and CYP3A activity in human intestinal microsomes (HIMs). Comparing the absence to presence of NADPH during preincubation of mitragynine with HLMs or HIMs, an ∼7-fold leftward shift in IC50 (∼20 to 3 μM) toward CYP3A resulted, prompting determination of TDI parameters (HLMs: K I , 4.1 ± 0.9 μM; k inact , 0.068 ± 0.01 min-1; HIMs: K I , 4.2 ± 2.5 μM; k inact , 0.079 ± 0.02 min-1). Mitragynine caused no leftward shift in IC50 toward CYP2C9 (∼40 μM) and CYP2D6 (∼1 μM) but was a strong competitive inhibitor of CYP2D6 (K i , 1.17 ± 0.07 μM). Using a recommended mechanistic static model, mitragynine (2-g kratom dose) was predicted to increase dextromethorphan and midazolam area under the plasma concentration-time curve by 1.06- and 5.69-fold, respectively. The predicted midazolam area under the plasma concentration-time curve ratio exceeded the recommended cutoff (1.25), which would have been missed if TDI was not considered. SIGNIFICANCE STATEMENT: Kratom, a botanical natural product increasingly consumed for its opioid-like effects, may precipitate potentially serious pharmacokinetic interactions with drugs. The abundant kratom indole alkaloid mitragynine was shown to be a time-dependent inhibitor of hepatic and intestinal cytochrome P450 3A activity. A mechanistic static model predicted mitragynine to increase systemic exposure to the probe drug substrate midazolam by 5.7-fold, necessitating further evaluation via dynamic models and clinical assessment to advance the understanding of consumer safety associated with kratom use.
Collapse
Affiliation(s)
- Rakshit S Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Allan E Rettie
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| |
Collapse
|
18
|
Espiritu MJ, Chen J, Yadav J, Larkin M, Pelletier RD, Chan JM, Gc JB, Natesan S, Harrelson JP. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metab Dispos 2020; 48:1028-1043. [PMID: 32788161 PMCID: PMC7543486 DOI: 10.1124/dmd.120.000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.
Collapse
Affiliation(s)
- Michael J Espiritu
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Justin Chen
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jaydeep Yadav
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Michael Larkin
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Robert D Pelletier
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeannine M Chan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeevan B Gc
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Senthil Natesan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - John P Harrelson
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| |
Collapse
|
19
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
20
|
Rodgers JT, Jones JP. Numerical Analysis of Time-Dependent Inhibition by MDMA. Drug Metab Dispos 2019; 48:1-7. [PMID: 31641009 DOI: 10.1124/dmd.119.089268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/12/2019] [Indexed: 01/08/2023] Open
Abstract
Methylenedioxymethamphetamine (MDMA) is a known drug of abuse and schedule 1 narcotic under the Controlled Substances Act. Previous pharmacokinetic work on MDMA used classic linearization techniques to conclude irreversible mechanism-based inhibition of CYP2D6. The current work challenges this outcome by assessing the possibility of two alternative reversible kinetic inhibition mechanisms known as the quasi-irreversible (QI) model and equilibrium model (EM). In addition, progress curve experiments were used to investigate the residual metabolism of MDMA by liver microsomes and CYP2D6 baculosomes over incubation periods up to 30 minutes. These experiments revealed activity in a terminal linear phase at the fractional rates with respect to initial turnover of 0.0354 ± 0.0089 in human liver microsomes and 0.0114 ± 0.0025 in baculosomes. Numerical model fits to percentage of remaining activity (PRA) data were consistent with progress curve modeling results, wherein an irreversible inhibition pathway was found unnecessary for good fit scoring. Both QI and EM kinetic mechanisms fit the PRA data well, although in CYP2D6 baculosomes the inclusion of an irreversible inactivation pathway did not allow for convergence to a reasonable fit. The kinetic complexity accessible to numerical modeling has been used to determine that MDMA is not an irreversible inactivator of CYP2D6, and instead follows what can be generally referred to as slowly reversible inhibition. SIGNIFICANCE STATEMENT: The work herein describes the usage of computational models to delineate between irreversible and slowly reversible time-dependent inhibition. Such models are used in the paper to analyze MDMA and classify it as a reversible time-dependent inhibitor.
Collapse
Affiliation(s)
- John T Rodgers
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
21
|
Yadav J, Korzekwa K, Nagar S. Impact of Lipid Partitioning on the Design, Analysis, and Interpretation of Microsomal Time-Dependent Inactivation. Drug Metab Dispos 2019; 47:732-742. [PMID: 31043439 PMCID: PMC6556519 DOI: 10.1124/dmd.118.085969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Nonspecific drug partitioning into microsomal membranes must be considered for in vitro-in vivo correlations. This work evaluated the effect of including lipid partitioning in the analysis of complex TDI kinetics with numerical methods. The covariance between lipid partitioning and multiple inhibitor binding was evaluated. Simulations were performed to test the impact of lipid partitioning on the interpretation of TDI kinetics, and experimental TDI datasets for paroxetine (PAR) and itraconazole (ITZ) were modeled. For most kinetic schemes, modeling lipid partitioning results in statistically better fits. For MM-IL simulations (KI,u = 0.1 µM, kinact = 0.1 minute-1), concurrent modeling of lipid partitioning for an fumic range (0.01, 0.1, and 0.5) resulted in better fits compared with post hoc correction (AICc: -526 vs. -496, -579 vs. -499, and -636 vs. -579, respectively). Similar results were obtained with EII-IL. Lipid partitioning may be misinterpreted as double binding, leading to incorrect parameter estimates. For the MM-IL datasets, when fumic = 0.02, MM-IL, and EII model fits were indistinguishable (δAICc = 3). For less partitioned datasets (fumic = 0.1 or 0.5), the inclusion of partitioning resulted in better models. The inclusion of lipid partitioning can lead to markedly different estimates of KI,u and kinact A reasonable alternate experimental design is nondilution TDI assays, with post hoc fumic incorporation. The best fit models for PAR (MIC-M-IL) and ITZ (MIC-EII-M-IL and MIC-EII-M-Seq-IL) were consistent with their reported mechanism and kinetics. Overall, experimental fumic values should be concurrently incorporated into TDI models with complex kinetics, when dilution protocols are used.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Seki H, Akiyoshi T, Imaoka A, Ohtani H. Inhibitory kinetics of fruit components on CYP2C19 activity. Drug Metab Pharmacokinet 2019; 34:181-186. [PMID: 30979536 DOI: 10.1016/j.dmpk.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 02/03/2023]
Abstract
It has been suggested that the fruit components resveratrol (RSV), 6', 7'-dihydroxybergamottin (DHB), and bergamottin (BG) might inhibit cytochrome P450 2C19 (CYP2C19) activity, but the mode and potency of such inhibition are yet to be investigated. This study aimed to investigate the mode and kinetics of the inhibition of CYP2C19-based omeprazole metabolism by RSV or grapefruit juice components (DHB or BG). RSV and DHB reduced CYP2C19 activity in a preincubation time-dependent manner, suggesting that they inactivated CYP2C19 via mechanism-based inhibition (MBI). Although BG inactivated CYP2C19 in a preincubation time- and concentration-dependent manner, suggesting that both MBI and reversible inhibition contributed to these effects, the concentration required to achieve 50% inhibition was 26-fold higher for reversible inhibition than for MBI (0.859 and 0.0331 μM, respectively), indicating that the inhibition of CYP2C19 by BG is primarily attributable to MBI. Based on the estimated intestinal concentrations of these components, it is considered that >90% of CYP2C19 would be inactivated after the consumption of normal amounts of grapefruit juice or RSV-containing substances. In conclusion, these findings suggest that food containing these components has the potential to evoke drug-food interactions caused by the MBI of intestinal CYP2C19 activity in the clinical setting.
Collapse
Affiliation(s)
- Hiroyuki Seki
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
23
|
Huang G, Yang L, Zhang Z, Ren S, Tang X, Zhou W, Wang Y, Ma Z, Gao S, Gao Y. Human PXR-mediated transcriptional activation of CYP3A4 by 'Fuzi' extracts. Toxicol Mech Methods 2019; 29:155-164. [PMID: 30303438 DOI: 10.1080/15376516.2018.1534296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study focused on determining whether the 'Fuzi' (FZ) extracts from different extraction methods are related to pregnane X receptor (PXR) and cytochrome P450 3A4 (CYP3A4), and explore the mechanism. METHODS FZ was extracted under various conditions, and the components were identified by Ultra Performance Liquid Chromatography/Quad Time of Flight Mass Spectrometry (UPLC/Q-TOF-MS). Annexin V-FITC and propidium iodide staining assays were used to measure the cell cytotoxicity of these extracts. Real-time PCR, western blot analysis and reporter gene assay were used to detect the expression changes of PXR and CYP3A4. RESULTS FZ extracts were found to contain high levels of monoester-diterpene alkaloids (MDAs) and diester-diterpene alkaloids (DDAs). FZ extracts were cytotoxic. Interestingly, we found that FZ extracts and DDAs can induce the expressions of PXR and CYP3A4. And the MDAs can inhibit the expressions of PXR and CYP3A4. CONCLUSION Different extracts of FZ can induce the expressions of PXR and CYP3A4 in different degrees. This may be related to the drug-drug interactions.
Collapse
Affiliation(s)
- Guangyao Huang
- a Department of Pharmacology , Basic Medical College, Anhui Medical University , Hefei , China
| | - Liang Yang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Zhaoyan Zhang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Sijia Ren
- a Department of Pharmacology , Basic Medical College, Anhui Medical University , Hefei , China
| | - Xianglin Tang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Wei Zhou
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Yuguang Wang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Zengchun Ma
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Shan Gao
- a Department of Pharmacology , Basic Medical College, Anhui Medical University , Hefei , China
| | - Yue Gao
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| |
Collapse
|