1
|
Kopp A, Kwon H, Johnston C, Vance S, Legg J, Galson-Holt L, Thurber GM. Impact of tissue penetration and albumin binding on design of T cell targeted bispecific agents. Neoplasia 2024; 48:100962. [PMID: 38183712 PMCID: PMC10809211 DOI: 10.1016/j.neo.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Bispecific agents are a rapidly growing class of cancer therapeutics, and immune targeted bispecific agents have the potential to expand functionality well beyond monoclonal antibody agents. Humabodies⁎ are fully human single domain antibodies that can be linked in a modular fashion to form multispecific therapeutics. However, the effect of heterogeneous delivery on the efficacy of crosslinking bispecific agents is currently unclear. In this work, we utilize a PSMA-CD137 Humabody with an albumin binding half-life extension (HLE) domain to determine the impact of tissue penetration on T cell activating bispecific agents. Using heterotypic spheroids, we demonstrate that increased tissue penetration results in higher T cell activation at sub-saturating concentrations. Next, we tested the effect of two different albumin binding moieties on tissue distribution using albumin-specific HLE domains with varying affinities for albumin and a non-specific lipophilic dye. The results show that a specific binding mechanism to albumin does not influence tissue penetration, but a non-specific mechanism reduced both spheroid uptake and distribution in the presence of albumin. These results highlight the potential importance of tissue penetration on bispecific agent efficacy and describe how the design parameters including albumin-binding domains can be selected to maximize the efficacy of bispecific agents.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hyeyoung Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | - James Legg
- Crescendo Biologics, Cambridge, United Kingdom
| | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
2
|
Duan F, Jin W, Zhang T, Sun Y, Deng X, Gao W. Thermo-pH-Sensitive Polymer Conjugated Glucose Oxidase for Tumor-Selective Starvation-Oxidation-Immune Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209765. [PMID: 36773963 DOI: 10.1002/adma.202209765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/03/2023] [Indexed: 05/17/2023]
Abstract
Protein drugs are increasingly used as therapeutics for the treatment of cancer. However, their inherent drawbacks, such as poor stability, low cell membrane and tissue permeability, lack of tumor selectivity, and severe side effects, limit their wide applications in cancer therapy. Herein, screening of a thermo-pH-sensitive polymer-glucose oxidase conjugate that can controllably self-assemble into nanoparticles with improved stability is reported. The size, surface charge, and bioactivity of the conjugate can be tuned by adjustment of the solution temperature and pH. The cellular uptake, intracellular hydrogen peroxide generation, and tumor cell spheroid penetration of the conjugate are greatly enhanced under the acidic tumor microenvironment, leading to increased cytotoxicity to tumor cells. Upon a single intratumoural injection, the conjugate penetrates into the whole tumor tissue but hardly diffuses into the normal tissues, resulting in the eradication of the tumors in mice without perceivable side effects. Simultaneously, the conjugate induces a robust antitumor immunity to efficiently inhibit the growth of distant tumors, especially in combination with an immune checkpoint inhibitor. These findings provide a novel and general strategy to make multifunctional protein-polymer conjugates with responsiveness to the acidic tumor microenvironment for selective tumor therapy.
Collapse
Affiliation(s)
- Fei Duan
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
| | - Wei Jin
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
| | - Tong Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuanzi Sun
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing, 100191, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
| |
Collapse
|
3
|
Mahmood T, Shahbaz A, Hussain N, Ali R, Bashir H, Rizwan K. Recent advancements in fusion protein technologies in oncotherapy: A review. Int J Biol Macromol 2023; 230:123161. [PMID: 36610574 DOI: 10.1016/j.ijbiomac.2023.123161] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Cancer is a complicated, adaptable, and heterogeneous disease caused by a wide variety of genetic changes that might impair ability of cells to function normally. The majority of the tumors can only be shrunk using conventional oncology therapies like chemotherapy, radiation, and surgical resection, and the tumor often recurs. The inability of conventional cancer therapies to completely destroy the Cancer Stem Cells (CSCs) that otherwise lead to therapy resistance is thus addressed by therapeutic approaches that concentrate on targeting CSCs and their micro-environmental niche. In this review, we summarize approaches that are used for the development of fusion proteins and their therapeutic applications for treating cancer. The main purpose of making advancements towards the fusion technology instead of using conventional treatment methods is to achieve a prolonged half-life of the therapeutic drugs. The fusion of drugs to the immune response enhancing cytokines or the fusion of antibody and cytokines not only increases half-life but also increase the stability of the anti-tumor drug. Several molecules including different fragments of antibodies, cytokines, Human Serum Albumin, transferrin, XTEN polymers, Elastin-like polypeptides (ELPs) can be employed as a fusion partner and the resulting fusion proteins are reported to show enhanced anti-tumor response.
Collapse
Affiliation(s)
- Tehreem Mahmood
- Department of Biotechnology, Quaid-i-azam University, Islamabad, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan.
| | - Rahat Ali
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Hamid Bashir
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan.
| |
Collapse
|
4
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
5
|
Ershov PV, Mezentsev YV, Ivanov AS. Interfacial Peptides as Affinity Modulating Agents of Protein-Protein Interactions. Biomolecules 2022; 12:106. [PMID: 35053254 PMCID: PMC8773757 DOI: 10.3390/biom12010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/25/2022] Open
Abstract
The identification of disease-related protein-protein interactions (PPIs) creates objective conditions for their pharmacological modulation. The contact area (interfaces) of the vast majority of PPIs has some features, such as geometrical and biochemical complementarities, "hot spots", as well as an extremely low mutation rate that give us key knowledge to influence these PPIs. Exogenous regulation of PPIs is aimed at both inhibiting the assembly and/or destabilization of protein complexes. Often, the design of such modulators is associated with some specific problems in targeted delivery, cell penetration and proteolytic stability, as well as selective binding to cellular targets. Recent progress in interfacial peptide design has been achieved in solving all these difficulties and has provided a good efficiency in preclinical models (in vitro and in vivo). The most promising peptide-containing therapeutic formulations are under investigation in clinical trials. In this review, we update the current state-of-the-art in the field of interfacial peptides as potent modulators of a number of disease-related PPIs. Over the past years, the scientific interest has been focused on following clinically significant heterodimeric PPIs MDM2/p53, PD-1/PD-L1, HIF/HIF, NRF2/KEAP1, RbAp48/MTA1, HSP90/CDC37, BIRC5/CRM1, BIRC5/XIAP, YAP/TAZ-TEAD, TWEAK/FN14, Bcl-2/Bax, YY1/AKT, CD40/CD40L and MINT2/APP.
Collapse
Affiliation(s)
- Pavel V. Ershov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.V.M.); (A.S.I.)
| | | | | |
Collapse
|
6
|
Li T, Zhang HZ, Ge GF, Yue ZR, Wang RY, Zhang Q, Gu Y, Song MJ, Li WB, Ma MZ, Wang MZ, Yang H, Li Y, Li HY. Albumin Fusion at the N-Terminus or C-Terminus of HM-3 Leads to Improved Pharmacokinetics and Bioactivities. Biomedicines 2021; 9:biomedicines9091084. [PMID: 34572270 PMCID: PMC8472738 DOI: 10.3390/biomedicines9091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
HM-3, an integrin antagonist, exhibits anti-tumor biological responses and therefore has potential as a therapeutic polypeptide. However, the clinical applications of HM-3 are limited by its short half-life. In this study, we genetically fused human serum albumin (HSA) to the N or C-terminus of HM-3 to improve HM-3 pharmacokinetics. HM-3/HSA proteins were successfully expressed in Pichia pastoris and displayed improved pharmacokinetic properties and stability. Among them, the half-life of HM-3-HSA was longer than HSA-HM-3. In vitro, the IC50 values of HSA-HM-3 and HM-3-HSA were 0.38 ± 0.14 μM and 0.25 ± 0.08 μM in B16F10 cells, respectively. In vivo, the inhibition rates of B16F10 tumor growth were 36% (HSA-HM-3) and 56% (HM-3-HSA), respectively, indicating antitumor activity of HM-3-HSA was higher than HSA-HM-3. In conclusion, these results suggested that the HM-3/HSA fusion protein might be potential candidate HM-3 agent for treatment of melanoma and when HSA was fused at the C-terminus of HM-3, the fusion protein had a higher stability and activity.
Collapse
Affiliation(s)
- Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Han-Zi Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Guang-Fei Ge
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Zhao-Rong Yue
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-R.Y.); (Y.G.); (M.-Z.W.)
| | - Ru-Yue Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Qian Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Yan Gu
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-R.Y.); (Y.G.); (M.-Z.W.)
| | - Mei-Juan Song
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Wen-Bo Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Min-Zhi Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
| | - Mei-Zhu Wang
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-R.Y.); (Y.G.); (M.-Z.W.)
| | - Hui Yang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China;
| | - Yang Li
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-R.Y.); (Y.G.); (M.-Z.W.)
- Correspondence: (Y.L.); (H.-Y.L.); Tel.: +86-0931-8915630 (H.-Y.L.)
| | - Hong-Yu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (T.L.); (H.-Z.Z.); (G.-F.G.); (R.-Y.W.); (Q.Z.); (M.-J.S.); (W.-B.L.); (M.-Z.M.)
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-R.Y.); (Y.G.); (M.-Z.W.)
- Correspondence: (Y.L.); (H.-Y.L.); Tel.: +86-0931-8915630 (H.-Y.L.)
| |
Collapse
|
7
|
The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol 2021; 187:24-34. [PMID: 34284054 DOI: 10.1016/j.ijbiomac.2021.07.080] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023]
Abstract
Human serum albumin (HSA)-based therapeutics have attracted tremendous attention in the development of anticancer agents. The versatile properties of HSA make HSA-based therapeutics possess improved pharmacokinetics, extended circulation half-life, enhanced efficacy, reduced toxicity, etc. Generally, the HSA-based therapeutics systems can be divided into four categories, i.e. HSA-drug nanoparticles, HSA-drug conjugates, HSA-binding prodrugs, and HSA-based recombinant fusion proteins: the latter mainly include antibody (domain)- and cytokine- fusion proteins. Advances in this area revealed the advantages of HSA-based systems in the development of tumor site-oriented therapeutics, partly referring to the enhanced penetration and retention (EPR) effect and the intensive macropinocytosis. Accordingly, a variety of technical platforms for the design and preparation of HSA-based therapeutics have been reported. Major strategies and directions for the drug development were discussed; those include (1) Tumor-site oriented drug delivery and enhanced drug retention, (2) Tumor-site prodrug release and activation, (3) Cancer cell bound intensive drug internalization, and (4) Tumor microenvironment (TME) directed immunomodulation. Notably, the multimodal HSA-based approach is promising for the development of tumor-oriented therapeutics for cancer therapy.
Collapse
|
8
|
|
9
|
Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed Pharmacother 2019; 113:108750. [DOI: 10.1016/j.biopha.2019.108750] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/21/2022] Open
|