1
|
Skrobanska M, Zabiszak M, Grześkiewicz AM, Kaczmarek MT, Jastrzab R. Investigation of Gallium(III) Complexes with Thiouracil Derivatives: Effects of pH on Coordination and Stability. Int J Mol Sci 2024; 25:12869. [PMID: 39684594 DOI: 10.3390/ijms252312869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study explores the formation and properties of new complexes involving gallium(III) and thiouracil derivatives-2-thiouracil (TU), 6-methyl-2-thiouracil (MTU), 6-propyl-2-thiouracil (PTU), 5-carboxy-2-thiouracil (CTU), and 6-methoxymethyl-2-thiouracil (MMTU). Conducted in aqueous solutions at relatively low concentrations, this research enabled the formation of soluble complexes, identified and described here for the first time. The influence of metal-to-ligand ratios on species distribution and their fluorescence properties was examined through potentiometric titration, alongside visible and fluorescence spectroscopy. Stability constants were determined, revealing that coordination mode and complex stability are pH-dependent, and nitrogen, sulfur, and oxygen atoms are involved in higher pH coordination. Additionally, the structure of the ligand 6-methoxymethyl-2-thiouracil was characterized. The findings suggest that these complexes hold potential for future biomedical applications, particularly as antibacterial and anticancer agents, warranting further studies under physiological conditions.
Collapse
Affiliation(s)
- Monika Skrobanska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Michał Zabiszak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Anita M Grześkiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Malgorzata T Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Renata Jastrzab
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
2
|
Katari O, Kumar K, Bhamble S, Jain S. Gemini surfactants as next-generation drug carriers in cancer management. Expert Opin Drug Deliv 2024; 21:1029-1051. [PMID: 39039919 DOI: 10.1080/17425247.2024.2384037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Gemini surfactants (GS) are an elite class of amphiphilic molecules that have shown up as a potential candidate in the field of drug delivery because of their exceptional physicochemical properties. They comprise two hydrophilic headgroups connected by an adaptable spacer and hydrophobic tails that has shown promising results in delivering different therapeutic agents to cancer cells at preclinical level. However further studies are in demand to unlock the full potential of GS in this field. AREAS COVERED This review summarizes the new advancements in GS as drug carriers in cancer therapy, their capacity to overcome conventional shortcomings and the demand for innovative approaches in disease treatment. A detailed list of GS-based formulations along with a brief description on oligomeric surfactants have also been provided in this review. This article summarizes data from studies identified through literature database searches including PubMed and Google Scholar (2010-2023). EXPERT OPINION There are major challenges that need to be addressed in this field which restrict their progression toward clinical phase. Further research can focus on developing a theranostic system that can provide simultaneous real-time monitoring along with treatment care. Nevertheless, ensuring the safety parameters of these nanocarriers followed by their regulatory approval is a time-consuming and expensive process. A collaborative approach between regulatory bodies, research institutions, and pharmaceutical companies can speed up the process in the upcoming years.
Collapse
Affiliation(s)
- Oly Katari
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Keshav Kumar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Shrushti Bhamble
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
3
|
Verderi L, Scaccaglia M, Rega M, Bacci C, Pinelli S, Pelosi G, Bisceglie F. New Stable Gallium(III) and Indium(III) Complexes with Thiosemicarbazone Ligands: A Biological Evaluation. Molecules 2024; 29:497. [PMID: 38276575 PMCID: PMC10820829 DOI: 10.3390/molecules29020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The aim of this work is to explore a new library of coordination compounds for medicinal applications. Gallium is known for its various applications in this field. Presently, indium is not particularly important in medicine, but it shares a lot of chemical traits with its above-mentioned lighter companion, gallium, and is also used in radio imaging. These metals are combined with thiosemicarbazones, ligating compounds increasingly known for their biological and pharmaceutical applications. In particular, the few ligands chosen to interact with these hard metal ions share the ideal affinity for a high charge density. Therefore, in this work we describe the synthesis and the characterization of the resulting coordination compounds. The yields of the reactions vary from a minimum of 21% to a maximum of 82%, using a fast and easy procedure. Nuclear Magnetic Resonance (NMR) and Infra Red (IR) spectroscopy, mass spectrometry, elemental analysis, and X-ray Diffraction (XRD) confirm the formation of stable compounds in all cases and a ligand-to-metal 2:1 stoichiometry with both cations. In addition, we further investigated their chemical and biological characteristics, via UV-visible titrations, stability tests, and cytotoxicity and antibiotic assays. The results confirm a strong stability in all explored conditions, which suggests that these compounds are more suitable for radio imaging applications rather than for antitumoral or antimicrobic ones.
Collapse
Affiliation(s)
- Lorenzo Verderi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (L.V.); (M.S.); (G.P.)
| | - Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (L.V.); (M.S.); (G.P.)
| | - Martina Rega
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.R.); (C.B.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.R.); (C.B.)
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (L.V.); (M.S.); (G.P.)
- Centre of Excellence for Toxicological Research (CERT), University of Parma, 43124 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (L.V.); (M.S.); (G.P.)
- Centre of Excellence for Toxicological Research (CERT), University of Parma, 43124 Parma, Italy
| |
Collapse
|
4
|
Yang Y, Yan DX, Rong RX, Shi BY, Zhang M, Liu J, Xin J, Xu T, Ma WJ, Li XL, Wang KR. Nucleolus imaging based on naphthalimide derivatives. Bioorg Chem 2024; 142:106969. [PMID: 37988784 DOI: 10.1016/j.bioorg.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Nucleolus was an important cellular organelle. The abnormal morphology and number of the nucleolus have been considered as diagnostic biomarkers for some human diseases. However, the imaging agent based on nucleolus was limited. In this manuscript, a series of nucleolar fluorescent probes based on naphthalimide derivatives (NI-1 ∼ NI-5) had been designed and synthesized. NI-1 ∼ NI-5 could penetrate cell membranes and nuclear membranes, achieve clear nucleolar staining in living cells. These results suggested that the presence of amino groups on the side chains of naphthalimide backbone could enhance the targeting to the cell nucleolus. In addition, the molecular docking results showed that NI-1 ∼ NI-5 formed hydrogen bonds and hydrophobic interactions with RNA, and exhibited enhanced fluorescence upon binding with RNA. These results will provide favorable support for the diagnosis and treatment of nucleolus-related diseases in the future.
Collapse
Affiliation(s)
- Yan Yang
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Dong-Xiao Yan
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Rui-Xue Rong
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China.
| | - Bing-Ye Shi
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002, PR China
| | - Man Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jing Liu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jie Xin
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Tao Xu
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Wen-Jie Ma
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Xiao-Liu Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China.
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
5
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Zibaei Z, Babaei E, Rezaie Nezhad Zamani A, Rahbarghazi R, Azeez HJ. Curcumin-enriched Gemini surfactant nanoparticles exhibited tumoricidal effects on human 3D spheroid HT-29 cells in vitro. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-020-00074-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Here, we examined the tumoricidal effect of Gemini surfactant nanoparticles enriched with curcumin on 3D spheroid HT-29 cells. The delivery of curcumin and other phytocompounds to the tumor niche is an important challenge.
Methods
Spheroid HT-29 cells were generated by using a conventional hanging drop method and exposed to different concentrations of Gemini-curcumin nanoparticles. The changes in spheroid integrity and cell viability were evaluated by measuring the spheroid diameter and LDH release, respectively. The uptake of Gemini-curcumin nanoparticles was detected by flow cytometry assay. Flow cytometric of Rhodamine 123 efflux was also performed. Migration capacity was analyzed using a Transwell insert assay. By using real-time PCR analysis and Western blotting, we studied the expression level of MMP-2, -9, Vimentin, and E-cadherin genes.
Results
Gemini-curcumin nanoparticles had the potential to disintegrate spheroids and decrease central density compared to the control group (p < 0.05). These changes coincided with enhanced LDH release by the increase of nanoparticle concentration (p < 0.05). Data highlighted the ability of cells to uptake synthetic nanoparticles in a dose-dependent manner. We found reduced Rhodamine 123 efflux in treated HT-29 spheroid cells compared to the control (p < 0.05). Nanoparticles significantly decreased the metastasis and epithelial-mesenchymal transition (EMT) rate by the suppression of MMP-2 and MMP-9, Vimentin, and induction of E-cadherin (p < 0.05).
Conclusion
Our data confirmed that Gemini curcumin has the potential to suppress cell proliferation and inhibit metastasis in 3D spheroid HT-29 cells in vitro.
Collapse
|
7
|
Zhang D, Wang W, Hou T, Pang Y, Wang C, Wu S, Wang Q. New Delivery Route of Gambogic Acid Via Skin for Topical Targeted Therapy of Cutaneous Melanoma and Reduction of Systemic Toxicity. J Pharm Sci 2020; 110:2167-2176. [PMID: 33373608 DOI: 10.1016/j.xphs.2020.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Cutaneous melanoma is the deadliest form of skin cancer, and gambogic acid (GA) exhibits potent anti-melanoma activity. However, clinical application of GA via intravenous injection and oral administration is limited by systemic toxicity and rapid metabolism in the blood. Here, we developed a new, topical route of GA delivery for anti-melanoma activity and reduction of systemic toxicity. The results indicated that the barrier of the stratum corneum (SC) and low diffusion of GA in the hydrophilic viable skin (epidermis and dermis) limited the GA penetration through intact skin. The combination of azone (AZ) and propylene glycol (PG) showed obvious synergistic effects on skin penetration by GA via improving the permeability of the SC and greatly increasing the skin accumulation of GA, thereby forming a high drug concentration in the skin and achieving a topical targeted treatment of melanoma. In addition, GA (AZ-PG) achieved the same anti-melanoma effect via topical delivery as via intravenous injection. Intravenous injection and oral administration of GA induced remarkable pathological changes in various organs in mice, whereas GA was not toxic to various organs or to the skin via topical delivery. These findings indicated that topical administration of GA is an alternative route for melanoma treatment.
Collapse
Affiliation(s)
- Ding Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tao Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yanjun Pang
- Liaoning Institute for Drug Control, Shenyang, Liaoning 110036, China
| | - Chao Wang
- Liaoning Institute for Drug Control, Shenyang, Liaoning 110036, China
| | - Shuai Wu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
8
|
Gaja V, Cawthray J, Geyer CR, Fonge H. Production and Semi-Automated Processing of 89Zr Using a Commercially Available TRASIS MiniAiO Module. Molecules 2020; 25:molecules25112626. [PMID: 32516930 PMCID: PMC7321185 DOI: 10.3390/molecules25112626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/23/2022] Open
Abstract
The increased interest in 89Zr-labelled immunoPET imaging probes for use in preclinical and clinical studies has led to a rising demand for the isotope. The highly penetrating 511 and 909 keV photons emitted by 89Zr deliver an undesirably high radiation dose, which makes it difficult to produce large amounts manually. Additionally, there is a growing demand for Good Manufacturing Practices (GMP)-grade radionuclides for clinical applications. In this study, we have adopted the commercially available TRASIS mini AllinOne (miniAiO) automated synthesis unit to achieve efficient and reproducible batches of 89Zr. This automated module is used for the target dissolution and separation of 89Zr from the yttrium target material. The 89Zr is eluted with a very small volume of oxalic acid (1.5 mL) directly over the sterile filter into the final vial. Using this sophisticated automated purification method, we obtained satisfactory amount of 89Zr in high radionuclidic and radiochemical purities in excess of 99.99%. The specific activity of three production batches were calculated and was found to be in the range of 1351–2323 MBq/µmol. ICP-MS analysis of final solutions showed impurity levels always below 1 ppm.
Collapse
Affiliation(s)
- Vijay Gaja
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK S7N 0W8, Canada;
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | | | - Clarence R. Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK S7N 5E5, Canada;
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK S7N 0W8, Canada;
- Department of Medical Imaging, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.: +1-306-655-3353; Fax: +1-306-655-1637
| |
Collapse
|
9
|
Younes NF, El Assasy AEHI, Makhlouf AIA. Microenvironmental pH-modified Amisulpride-Labrasol matrix tablets: development, optimization and in vivo pharmacokinetic study. Drug Deliv Transl Res 2020; 11:103-117. [PMID: 31900797 DOI: 10.1007/s13346-019-00706-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amisulpride (AMS) is atypical antipsychotic with a weak basic nature (pKa 9.37), which results in low solubility in the high pH of the intestine. It is also recognized as a substrate of P-glycoprotein efflux pump. Both factors lead to its low oral bioavailability (48%). The daily dose of AMS is between 200 and 1200 mg to be taken in divided doses which compromise patient compliance. Therefore, controlled release formulation of AMS is of clinical significance. AMS was formulated into matrix tablets containing Labrasol, P-glycoprotein efflux inhibitor, and a penetration enhancer, using direct compression technique. The tablets were prepared according to 21·41 factorial design using two polymers, namely, HPMC and Carbopol 934 at four concentrations (20%, 30%, 40%, 50%). Percentage AMS released after 2 h (Q2hr%) and 8 h (Q8hr%) were chosen as dependent variables. Two acidic pH modifiers (fumaric acid and tartaric acid) at two levels (15% and 30%) were incorporated in the tablet according to 22 factorial design. All formulae with acidic pH modifier had similarity factor (f2) ≥ 50 proving the pH independent release of AMS. The pharmacokinetic study in rabbits revealed 30% enhancement of the oral absorption AMS imparted by the pH-modified matrix tablet containing Labrasol. Graphical abstract.
Collapse
Affiliation(s)
- Nihal Farid Younes
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Abd El-Halim I El Assasy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Amal I A Makhlouf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| |
Collapse
|