1
|
Liu T, Wang S, Pang S, Tan X. Truncated Arctangent Rank Minimization and Double-Strategy Neighborhood Constraint Graph Inference for Drug-Disease Association Prediction. J Chem Inf Model 2025. [PMID: 39889248 DOI: 10.1021/acs.jcim.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Accurately identifying new therapeutic uses for drugs is essential to advancing pharmaceutical research and development. Graph inference techniques have shown great promise in predicting drug-disease associations, offering both high convergence accuracy and efficiency. However, most existing methods fail to sufficiently address the issue of numerous missing information in drug-disease association networks. Moreover, existing methods are often constrained by local or single-directional reasoning. To overcome these limitations, we propose a novel approach, truncated arctangent rank minimization and double-strategy neighborhood constraint graph inference (TARMDNGI), for drug-disease association prediction. First, we calculate Gaussian kernel and Laplace kernel similarities for both drugs and diseases, which are then integrated using nonlinear fusion techniques. We introduce a new matrix completion technique, referred to as TARM. TARM takes the adjacency matrix of drug-disease heterogeneous networks as the target matrix and enhances the robustness and formability of the edges of DDA networks by truncated arctangent rank minimization. Additionally, we propose a double-strategy neighborhood constrained graph inference method to predict drug-disease associations. This technique focuses on the neighboring nodes of drugs and diseases, filtering out potential noise from more distant nodes. Furthermore, the DNGI method employs both top-down and bottom-up strategies to infer associations using the entire drug-disease heterogeneous network. The synergy of the dual strategies can enhance the comprehensive processing of complex structures and cross-domain associations in heterogeneous graphs, ensuring that the rich information in the network is fully utilized. Experimental results consistently demonstrate that TARMDNGI outperforms state-of-the-art models across two drug-disease datasets, one lncRNA-disease dataset, and one microbe-disease dataset.
Collapse
Affiliation(s)
- Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
- State Key Laboratory of Chemical Safety, Qingdao 266580, China
- Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, Qingdao 266580, China
| | - Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
- State Key Laboratory of Chemical Safety, Qingdao 266580, China
- Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, Qingdao 266580, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
- State Key Laboratory of Chemical Safety, Qingdao 266580, China
- Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, Qingdao 266580, China
| | - Xiaodong Tan
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
- Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, Qingdao 266580, China
| |
Collapse
|
2
|
Sun XY, Hou ZJ, Zhang WG, Chen Y, Yao HB. HTFSMMA: Higher-Order Topological Guided Small Molecule-MicroRNA Associations Prediction. J Comput Biol 2024; 31:886-906. [PMID: 39109562 DOI: 10.1089/cmb.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Small molecules (SMs) play a pivotal role in regulating microRNAs (miRNAs). Existing prediction methods for associations between SM-miRNA have overlooked crucial aspects: the incorporation of local topological features between nodes, which represent either SMs or miRNAs, and the effective fusion of node features with topological features. This study introduces a novel approach, termed high-order topological features for SM-miRNA association prediction (HTFSMMA), which specifically addresses these limitations. Initially, an association graph is formed by integrating SM-miRNA association data, SM similarity, and miRNA similarity. Subsequently, we focus on the local information of links and propose target neighborhood graph convolutional network for extracting local topological features. Then, HTFSMMA employs graph attention networks to amalgamate these local features, thereby establishing a platform for the acquisition of high-order features through random walks. Finally, the extracted features are integrated into the multilayer perceptron to derive the association prediction scores. To demonstrate the performance of HTFSMMA, we conducted comprehensive evaluations including five-fold cross-validation, leave-one-out cross-validation (LOOCV), SM-fixed local LOOCV, and miRNA-fixed local LOOCV. The area under receiver operating characteristic curve values were 0.9958 ± 0.0024 (0.8722 ± 0.0021), 0.9986 (0.9504), 0.9974 (0.9111), and 0.9977 (0.9074), respectively. Our findings demonstrate the superior performance of HTFSMMA over existing approaches. In addition, three case studies and the DeLong test have confirmed the effectiveness of the proposed method. These results collectively underscore the significance of HTFSMMA in facilitating the inference of associations between SMs and miRNAs.
Collapse
Affiliation(s)
- Xiao-Yan Sun
- School of Computer Science and Artificial Intelligence & Aliyun Big Data, Changzhou University, Changzhou, China
| | - Zhen-Jie Hou
- School of Computer Science and Artificial Intelligence & Aliyun Big Data, Changzhou University, Changzhou, China
| | - Wen-Guang Zhang
- School of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Chen
- School of Computer Science and Artificial Intelligence & Aliyun Big Data, Changzhou University, Changzhou, China
| | - Hai-Bin Yao
- School of Computer Science and Artificial Intelligence & Aliyun Big Data, Changzhou University, Changzhou, China
| |
Collapse
|
3
|
Wang S, Liu T, Ren C, Zhao Y, Qiao S, Zhang Y, Pang S. Heterogeneous graph inference with range constrainted L 2,1-collaborative matrix factorization for small molecule-miRNA association prediction. Comput Biol Chem 2024; 110:108078. [PMID: 38677013 DOI: 10.1016/j.compbiolchem.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
MicroRNAs (miRNAs) play a vital role in regulating gene expression and various biological processes. As a result, they have been identified as effective targets for small molecule (SM) drugs in disease treatment. Heterogeneous graph inference stands as a classical approach for predicting SM-miRNA associations, showcasing commendable convergence accuracy and speed. However, most existing methods do not adequately address the inherent sparsity in SM-miRNA association networks, and imprecise SM/miRNA similarity metrics reduce the accuracy of predicting SM-miRNA associations. In this research, we proposed a heterogeneous graph inference with range constrained L2,1-collaborative matrix factorization (HGIRCLMF) method to predict potential SM-miRNA associations. First, we computed the multi-source similarities of SM/miRNA and integrated these similarity information into a comprehensive SM/miRNA similarity. This step improved the accuracy of SM and miRNA similarity, ensuring reliability for the subsequent inference of the heterogeneity map. Second, we used a range constrained L2,1-collaborative matrix factorization (RCLMF) model to pre-populate the SM-miRNA association matrix with missing values. In this step, we developed a novel matrix decomposition method that enhances the robustness and formative nature of SM-miRNA edges between SM networks and miRNA networks. Next, we built a well-established SM-miRNA heterogeneous network utilizing the processed biological information. Finally, HGIRCLMF used this network data to infer unknown association pair scores. We implemented four cross-validation experiments on two distinct datasets, and HGIRCLMF acquired the highest areas under the curve, surpassing six state-of-the-art computational approaches. Furthermore, we performed three case studies to validate the predictive power of our method in practical application.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yawu Zhao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Sibo Qiao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China.
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
4
|
Xu P, Li C, Yuan J, Bao Z, Liu W. Predict lncRNA-drug associations based on graph neural network. Front Genet 2024; 15:1388015. [PMID: 38737125 PMCID: PMC11082279 DOI: 10.3389/fgene.2024.1388015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
LncRNAs are an essential type of non-coding RNAs, which have been reported to be involved in various human pathological conditions. Increasing evidence suggests that drugs can regulate lncRNAs expression, which makes it possible to develop lncRNAs as therapeutic targets. Thus, developing in-silico methods to predict lncRNA-drug associations (LDAs) is a critical step for developing lncRNA-based therapies. In this study, we predict LDAs by using graph convolutional networks (GCN) and graph attention networks (GAT) based on lncRNA and drug similarity networks. Results show that our proposed method achieves good performance (average AUCs > 0.92) on five datasets. In addition, case studies and KEGG functional enrichment analysis further prove that the model can effectively identify novel LDAs. On the whole, this study provides a deep learning-based framework for predicting novel LDAs, which will accelerate the lncRNA-targeted drug development process.
Collapse
Affiliation(s)
- Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Chuchu Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Jiaqi Yuan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Zhenshen Bao
- College of Information Engineering, Taizhou University, Taizhou, Jiangsu, China
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Wang S, Li Y, Zhang Y, Pang S, Qiao S, Zhang Y, Wang F. Generative Adversarial Matrix Completion Network based on Multi-Source Data Fusion for miRNA-Disease Associations Prediction. Brief Bioinform 2023; 24:bbad270. [PMID: 37482409 DOI: 10.1093/bib/bbad270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Numerous biological studies have shown that considering disease-associated micro RNAs (miRNAs) as potential biomarkers or therapeutic targets offers new avenues for the diagnosis of complex diseases. Computational methods have gradually been introduced to reveal disease-related miRNAs. Considering that previous models have not fused sufficiently diverse similarities, that their inappropriate fusion methods may lead to poor quality of the comprehensive similarity network and that their results are often limited by insufficiently known associations, we propose a computational model called Generative Adversarial Matrix Completion Network based on Multi-source Data Fusion (GAMCNMDF) for miRNA-disease association prediction. We create a diverse network connecting miRNAs and diseases, which is then represented using a matrix. The main task of GAMCNMDF is to complete the matrix and obtain the predicted results. The main innovations of GAMCNMDF are reflected in two aspects: GAMCNMDF integrates diverse data sources and employs a nonlinear fusion approach to update the similarity networks of miRNAs and diseases. Also, some additional information is provided to GAMCNMDF in the form of a 'hint' so that GAMCNMDF can work successfully even when complete data are not available. Compared with other methods, the outcomes of 10-fold cross-validation on two distinct databases validate the superior performance of GAMCNMDF with statistically significant results. It is worth mentioning that we apply GAMCNMDF in the identification of underlying small molecule-related miRNAs, yielding outstanding performance results in this specific domain. In addition, two case studies about two important neoplasms show that GAMCNMDF is a promising prediction method.
Collapse
Affiliation(s)
- ShuDong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580, Shandong, China
| | - YunYin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580, Shandong, China
| | - YuanYuan Zhang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580, Shandong, China
| | - ShanChen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580, Shandong, China
| | - SiBo Qiao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580, Shandong, China
| | - Yu Zhang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580, Shandong, China
| | - FuYu Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580, Shandong, China
| |
Collapse
|
6
|
Wang S, Ren C, Zhang Y, Li Y, Pang S, Song T. Identifying potential small molecule-miRNA associations via Robust PCA based on γ-norm regularization. Brief Bioinform 2023; 24:bbad312. [PMID: 37670501 DOI: 10.1093/bib/bbad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is closely associated with refractory human diseases, and the identification of potential associations between small molecule (SM) drugs and miRNAs can provide valuable insights for clinical treatment. Existing computational techniques for inferring potential associations suffer from limitations in terms of accuracy and efficiency. To address these challenges, we devise a novel predictive model called RPCA$\Gamma $NR, in which we propose a new Robust principal component analysis (PCA) framework based on $\gamma $-norm and $l_{2,1}$-norm regularization and design an Augmented Lagrange Multiplier method to optimize it, thereby deriving the association scores. The Gaussian Interaction Profile Kernel Similarity is calculated to capture the similarity information of SMs and miRNAs in known associations. Through extensive evaluation, including Cross Validation Experiments, Independent Validation Experiment, Efficiency Analysis, Ablation Experiment, Matrix Sparsity Analysis, and Case Studies, RPCA$\Gamma $NR outperforms state-of-the-art models concerning accuracy, efficiency and robustness. In conclusion, RPCA$\Gamma $NR can significantly streamline the process of determining SM-miRNA associations, thus contributing to advancements in drug development and disease treatment.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Xin An Street, 266590 Shandong, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Tao Song
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| |
Collapse
|
7
|
Sun J, Xu M, Ru J, James-Bott A, Xiong D, Wang X, Cribbs AP. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. Eur J Med Chem 2023; 257:115500. [PMID: 37262996 PMCID: PMC11554572 DOI: 10.1016/j.ejmech.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Small molecules have been providing medical breakthroughs for human diseases for more than a century. Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA-targeted small molecule inhibitors for disease treatment. This new approach is grounded in their posttranscriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of algorithms has allowed for the integration of computational strategies built on top of laboratory-based data, facilitating a more precise and rational design and discovery of lead compounds. To complement the use of extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational approach based on only molecular sequences. Moreover, various computational tools for predicting molecular interactions in biological networks using similarity-based inference techniques have been accumulated in established studies. However, there are a limited number of comprehensive reviews covering both computational and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness of deep learning for obtaining the physicochemical characterization of DTIs.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Miaoer Xu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
8
|
Qu J, Song Z, Cheng X, Jiang Z, Zhou J. Neighborhood-based inference and restricted Boltzmann machine for small molecule-miRNA associations prediction. PeerJ 2023; 11:e15889. [PMID: 37641598 PMCID: PMC10460564 DOI: 10.7717/peerj.15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Background A growing number of experiments have shown that microRNAs (miRNAs) can be used as target of small molecules (SMs) to regulate gene expression for treating diseases. Therefore, identifying SM-related miRNAs is helpful for the treatment of diseases in the domain of medical investigation. Methods This article presents a new computational model, called NIRBMSMMA (neighborhood-based inference (NI) and restricted Boltzmann machine (RBM)), which we developed to identify potential small molecule-miRNA associations (NIRBMSMMA). First, grounded on known SM-miRNAs associations, SM similarity and miRNA similarity, NI was used to predict score of an unknown SM-miRNA pair by reckoning the sum of known associations between neighbors of the SM (miRNA) and the miRNA (SM). Second, utilizing a two-layered generative stochastic artificial neural network, RBM was used to predict SM-miRNA association by learning potential probability distribution from known SM-miRNA associations. At last, an ensemble learning model was conducted to combine NI and RBM for identifying potential SM-miRNA associations. Results Furthermore, we conducted global leave one out cross validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold cross validation to assess performance of NIRBMSMMA based on three datasets. Results showed that NIRBMSMMA obtained areas under the curve (AUC) of 0.9912, 0.9875, 0.8376 and 0.9898 ± 0.0009 under global LOOCV, miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold cross validation based on dataset 1, respectively. For dataset 2, the AUCs are 0.8645, 0.8720, 0.7066 and 0.8547 ± 0.0046 in turn. For dataset 3, the AUCs are 0.9884, 0.9802, 0.8239 and 0.9870 ± 0.0015 in turn. Also, we conducted case studies to further assess the predictive performance of NIRBMSMMA. These results illustrated the proposed model is a useful tool in predicting potential SM-miRNA associations.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zihao Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaolong Cheng
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zhibin Jiang
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jie Zhou
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
9
|
Wang S, Liu T, Ren C, Wu W, Zhao Z, Pang S, Zhang Y. Predicting potential small molecule-miRNA associations utilizing truncated schatten p-norm. Brief Bioinform 2023; 24:bbad234. [PMID: 37366591 DOI: 10.1093/bib/bbad234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
MicroRNAs (miRNAs) have significant implications in diverse human diseases and have proven to be effectively targeted by small molecules (SMs) for therapeutic interventions. However, current SM-miRNA association prediction models do not adequately capture SM/miRNA similarity. Matrix completion is an effective method for association prediction, but existing models use nuclear norm instead of rank function, which has some drawbacks. Therefore, we proposed a new approach for predicting SM-miRNA associations by utilizing the truncated schatten p-norm (TSPN). First, the SM/miRNA similarity was preprocessed by incorporating the Gaussian interaction profile kernel similarity method. This identified more SM/miRNA similarities and significantly improved the SM-miRNA prediction accuracy. Next, we constructed a heterogeneous SM-miRNA network by combining biological information from three matrices and represented the network with its adjacency matrix. Finally, we constructed the prediction model by minimizing the truncated schatten p-norm of this adjacency matrix and we developed an efficient iterative algorithmic framework to solve the model. In this framework, we also used a weighted singular value shrinkage algorithm to avoid the problem of excessive singular value shrinkage. The truncated schatten p-norm approximates the rank function more closely than the nuclear norm, so the predictions are more accurate. We performed four different cross-validation experiments on two separate datasets, and TSPN outperformed various most advanced methods. In addition, public literature confirms a large number of predictive associations of TSPN in four case studies. Therefore, TSPN is a reliable model for SM-miRNA association prediction.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Wenhao Wu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Zhiyuan Zhao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- College of Information and Control Engineering, Qingdao University of Technology, Qingdao 266580, China
| |
Collapse
|
10
|
Niu Z, Gao X, Xia Z, Zhao S, Sun H, Wang H, Liu M, Kong X, Ma C, Zhu H, Gao H, Liu Q, Yang F, Song X, Lu J, Zhou X. Prediction of small molecule drug-miRNA associations based on GNNs and CNNs. Front Genet 2023; 14:1201934. [PMID: 37323664 PMCID: PMC10268031 DOI: 10.3389/fgene.2023.1201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in various biological processes and human diseases, and are considered as therapeutic targets for small molecules (SMs). Due to the time-consuming and expensive biological experiments required to validate SM-miRNA associations, there is an urgent need to develop new computational models to predict novel SM-miRNA associations. The rapid development of end-to-end deep learning models and the introduction of ensemble learning ideas provide us with new solutions. Based on the idea of ensemble learning, we integrate graph neural networks (GNNs) and convolutional neural networks (CNNs) to propose a miRNA and small molecule association prediction model (GCNNMMA). Firstly, we use GNNs to effectively learn the molecular structure graph data of small molecule drugs, while using CNNs to learn the sequence data of miRNAs. Secondly, since the black-box effect of deep learning models makes them difficult to analyze and interpret, we introduce attention mechanisms to address this issue. Finally, the neural attention mechanism allows the CNNs model to learn the sequence data of miRNAs to determine the weight of sub-sequences in miRNAs, and then predict the association between miRNAs and small molecule drugs. To evaluate the effectiveness of GCNNMMA, we implement two different cross-validation (CV) methods based on two different datasets. Experimental results show that the cross-validation results of GCNNMMA on both datasets are better than those of other comparison models. In a case study, Fluorouracil was found to be associated with five different miRNAs in the top 10 predicted associations, and published experimental literature confirmed that Fluorouracil is a metabolic inhibitor used to treat liver cancer, breast cancer, and other tumors. Therefore, GCNNMMA is an effective tool for mining the relationship between small molecule drugs and miRNAs relevant to diseases.
Collapse
|
11
|
Wang S, Ren C, Zhang Y, Pang S, Qiao S, Wu W, Lin B. AMCSMMA: Predicting Small Molecule-miRNA Potential Associations Based on Accurate Matrix Completion. Cells 2023; 12:cells12081123. [PMID: 37190032 DOI: 10.3390/cells12081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Exploring potential associations between small molecule drugs (SMs) and microRNAs (miRNAs) is significant for drug development and disease treatment. Since biological experiments are expensive and time-consuming, we propose a computational model based on accurate matrix completion for predicting potential SM-miRNA associations (AMCSMMA). Initially, a heterogeneous SM-miRNA network is constructed, and its adjacency matrix is taken as the target matrix. An optimization framework is then proposed to recover the target matrix with the missing values by minimizing its truncated nuclear norm, an accurate, robust, and efficient approximation to the rank function. Finally, we design an effective two-step iterative algorithm to solve the optimization problem and obtain the prediction scores. After determining the optimal parameters, we conduct four kinds of cross-validation experiments based on two datasets, and the results demonstrate that AMCSMMA is superior to the state-of-the-art methods. In addition, we implement another validation experiment, in which more evaluation metrics in addition to the AUC are introduced and finally achieve great results. In two types of case studies, a large number of SM-miRNA pairs with high predictive scores are confirmed by the published experimental literature. In summary, AMCSMMA has superior performance in predicting potential SM-miRNA associations, which can provide guidance for biological experiments and accelerate the discovery of new SM-miRNA associations.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266580, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Sibo Qiao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Wenhao Wu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Boyang Lin
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
12
|
Wang MN, Li Y, Lei LL, Ding DW, Xie XJ. Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion. Front Pharmacol 2023; 14:1132012. [PMID: 36817132 PMCID: PMC9931722 DOI: 10.3389/fphar.2023.1132012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Increasing evidences suggest that miRNAs play a key role in the occurrence and progression of many complex human diseases. Therefore, targeting dysregulated miRNAs with small molecule drugs in the clinical has become a new treatment. Nevertheless, it is high cost and time-consuming for identifying miRNAs-targeted with drugs by biological experiments. Thus, more reliable computational method for identification associations of drugs with miRNAs urgently need to be developed. In this study, we proposed an efficient method, called GNMFDMA, to predict potential associations of drug with miRNA by combining graph Laplacian regularization with non-negative matrix factorization. We first calculated the overall similarity matrices of drugs and miRNAs according to the collected different biological information. Subsequently, the new drug-miRNA association adjacency matrix was reformulated based on the K nearest neighbor profiles so as to put right the false negative associations. Finally, graph Laplacian regularization collaborative non-negative matrix factorization was used to calculate the association scores of drugs with miRNAs. In the cross validation, GNMFDMA obtains AUC of 0.9193, which outperformed the existing methods. In addition, case studies on three common drugs (i.e., 5-Aza-CdR, 5-FU and Gemcitabine), 30, 31 and 34 of the top-50 associations inferred by GNMFDMA were verified. These results reveal that GNMFDMA is a reliable and efficient computational approach for identifying the potential drug-miRNA associations.
Collapse
Affiliation(s)
- Mei-Neng Wang
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - Yu Li
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China,*Correspondence: Yu Li,
| | - Li-Lan Lei
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - De-Wu Ding
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - Xue-Jun Xie
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| |
Collapse
|
13
|
Luo Y, Peng L, Shan W, Sun M, Luo L, Liang W. Machine learning in the development of targeting microRNAs in human disease. Front Genet 2023; 13:1088189. [PMID: 36685965 PMCID: PMC9845262 DOI: 10.3389/fgene.2022.1088189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
A microRNA is a small, single-stranded, non-coding ribonucleic acid that plays a crucial role in RNA silencing and can regulate gene expression. With the in-depth study of miRNA in development and disease, miRNA has become an attractive target for novel therapeutic strategies. Exploring miRNA targeting therapy only through experiments is expensive and laborious, so it is essential to develop novel and efficient computational methods to narrow down the search. Recent advances in machine learning applied in biomedical informatics provide opportunities to explore miRNA-targeting drugs, thus promoting miRNA therapeutics. This review provides an overview of recent advancements in miRNA targeting therapeutic using machine learning. First, we mainly describe the basics of predicting miRNA targeting drugs, including pharmacogenomic data resources and data preprocessing. Then we present primary machine learning algorithms and elaborate their application in discovering relationships among miRNAs, drugs, and diseases. Along with the progress of miRNA targeting therapeutics, we finally analyze and discuss the current challenges and opportunities that machine learning confronts.
Collapse
Affiliation(s)
- Yuxun Luo
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Li Peng
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Wenyu Shan
- School of Computer Science, University of South China, Hengyang, China
| | - Mengyue Sun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, United States
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang, China
| | - Wei Liang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China,*Correspondence: Wei Liang,
| |
Collapse
|
14
|
Ni J, Cheng X, Ni T, Liang J. Identifying SM-miRNA associations based on layer attention graph convolutional network and matrix decomposition. Front Mol Biosci 2022; 9:1009099. [PMID: 36504714 PMCID: PMC9732030 DOI: 10.3389/fmolb.2022.1009099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
The accurate prediction of potential associations between microRNAs (miRNAs) and small molecule (SM) drugs can enhance our knowledge of how SM cures endogenous miRNA-related diseases. Given that traditional methods for predicting SM-miRNA associations are time-consuming and arduous, a number of computational models have been proposed to anticipate the potential SM-miRNA associations. However, several of these strategies failed to eliminate noise from the known SM-miRNA association information or failed to prioritize the most significant known SM-miRNA associations. Therefore, we proposed a model of Graph Convolutional Network with Layer Attention mechanism for SM-MiRNA Association prediction (GCNLASMMA). Firstly, we obtained the new SM-miRNA associations by matrix decomposition. The new SM-miRNA associations, as well as the integrated SM similarity and miRNA similarity were subsequently incorporated into a heterogeneous network. Finally, a graph convolutional network with an attention mechanism was used to compute the reconstructed SM-miRNA association matrix. Furthermore, four types of cross validations and two types of case studies were performed to assess the performance of GCNLASMMA. In cross validation, global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and 5-fold cross-validation achieved excellent performance. Numerous hypothesized associations in case studies were confirmed by experimental literatures. All of these results confirmed that GCNLASMMA is a trustworthy association inference method.
Collapse
|
15
|
Peng L, Tu Y, Huang L, Li Y, Fu X, Chen X. DAESTB: inferring associations of small molecule-miRNA via a scalable tree boosting model based on deep autoencoder. Brief Bioinform 2022; 23:6827720. [PMID: 36377749 DOI: 10.1093/bib/bbac478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are closely related to a variety of human diseases, not only regulating gene expression, but also having an important role in human life activities and being viable targets of small molecule drugs for disease treatment. Current computational techniques to predict the potential associations between small molecule and miRNA are not that accurate. Here, we proposed a new computational method based on a deep autoencoder and a scalable tree boosting model (DAESTB), to predict associations between small molecule and miRNA. First, we constructed a high-dimensional feature matrix by integrating small molecule-small molecule similarity, miRNA-miRNA similarity and known small molecule-miRNA associations. Second, we reduced feature dimensionality on the integrated matrix using a deep autoencoder to obtain the potential feature representation of each small molecule-miRNA pair. Finally, a scalable tree boosting model is used to predict small molecule and miRNA potential associations. The experiments on two datasets demonstrated the superiority of DAESTB over various state-of-the-art methods. DAESTB achieved the best AUC value. Furthermore, in three case studies, a large number of predicted associations by DAESTB are confirmed with the public accessed literature. We envision that DAESTB could serve as a useful biological model for predicting potential small molecule-miRNA associations.
Collapse
Affiliation(s)
- Li Peng
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory for Service computing and Novel Software Technology
| | - Yuan Tu
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Yang Li
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Xiangzheng Fu
- College of Information Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Xiang Chen
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| |
Collapse
|
16
|
Lian M, Wang X, Du W. Integrated multi-similarity fusion and heterogeneous graph inference for drug-target interaction prediction. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.04.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zheng J, Xiao X, Qiu WR. DTI-BERT: Identifying Drug-Target Interactions in Cellular Networking Based on BERT and Deep Learning Method. Front Genet 2022; 13:859188. [PMID: 35754843 PMCID: PMC9213727 DOI: 10.3389/fgene.2022.859188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Drug–target interactions (DTIs) are regarded as an essential part of genomic drug discovery, and computational prediction of DTIs can accelerate to find the lead drug for the target, which can make up for the lack of time-consuming and expensive wet-lab techniques. Currently, many computational methods predict DTIs based on sequential composition or physicochemical properties of drug and target, but further efforts are needed to improve them. In this article, we proposed a new sequence-based method for accurately identifying DTIs. For target protein, we explore using pre-trained Bidirectional Encoder Representations from Transformers (BERT) to extract sequence features, which can provide unique and valuable pattern information. For drug molecules, Discrete Wavelet Transform (DWT) is employed to generate information from drug molecular fingerprints. Then we concatenate the feature vectors of the DTIs, and input them into a feature extraction module consisting of a batch-norm layer, rectified linear activation layer and linear layer, called BRL block and a Convolutional Neural Networks module to extract DTIs features further. Subsequently, a BRL block is used as the prediction engine. After optimizing the model based on contrastive loss and cross-entropy loss, it gave prediction accuracies of the target families of G Protein-coupled receptors, ion channels, enzymes, and nuclear receptors up to 90.1, 94.7, 94.9, and 89%, which indicated that the proposed method can outperform the existing predictors. To make it as convenient as possible for researchers, the web server for the new predictor is freely accessible at: https://bioinfo.jcu.edu.cn/dtibert or http://121.36.221.79/dtibert/. The proposed method may also be a potential option for other DITs.
Collapse
Affiliation(s)
- Jie Zheng
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China
| | - Xuan Xiao
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China
| | - Wang-Ren Qiu
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China
| |
Collapse
|
18
|
Sikander R, Ghulam A, Ali F. XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set. Sci Rep 2022; 12:5505. [PMID: 35365726 PMCID: PMC8976041 DOI: 10.1038/s41598-022-09484-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Accurate identification of drug-targets in human body has great significance for designing novel drugs. Compared with traditional experimental methods, prediction of drug-targets via machine learning algorithms has enhanced the attention of many researchers due to fast and accurate prediction. In this study, we propose a machine learning-based method, namely XGB-DrugPred for accurate prediction of druggable proteins. The features from primary protein sequences are extracted by group dipeptide composition, reduced amino acid alphabet, and novel encoder pseudo amino acid composition segmentation. To select the best feature set, eXtreme Gradient Boosting-recursive feature elimination is implemented. The best feature set is provided to eXtreme Gradient Boosting (XGB), Random Forest, and Extremely Randomized Tree classifiers for model training and prediction. The performance of these classifiers is evaluated by tenfold cross-validation. The empirical results show that XGB-based predictor achieves the best results compared with other classifiers and existing methods in the literature.
Collapse
Affiliation(s)
- Rahu Sikander
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, China.
| | - Ali Ghulam
- Computerization and Network Section, Sindh Agriculture University, Tandojam, Pakistan
| | - Farman Ali
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
19
|
Yin Y, Hu H, Yang Z, Jiang F, Huang Y, Wu J. AFSE: towards improving model generalization of deep graph learning of ligand bioactivities targeting GPCR proteins. Brief Bioinform 2022; 23:6554127. [PMID: 35348582 DOI: 10.1093/bib/bbac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Ligand molecules naturally constitute a graph structure. Recently, many excellent deep graph learning (DGL) methods have been proposed and used to model ligand bioactivities, which is critical for the virtual screening of drug hits from compound databases in interest. However, pharmacists can find that these well-trained DGL models usually are hard to achieve satisfying performance in real scenarios for virtual screening of drug candidates. The main challenges involve that the datasets for training models were small-sized and biased, and the inner active cliff cases would worsen model performance. These challenges would cause predictors to overfit the training data and have poor generalization in real virtual screening scenarios. Thus, we proposed a novel algorithm named adversarial feature subspace enhancement (AFSE). AFSE dynamically generates abundant representations in new feature subspace via bi-directional adversarial learning, and then minimizes the maximum loss of molecular divergence and bioactivity to ensure local smoothness of model outputs and significantly enhance the generalization of DGL models in predicting ligand bioactivities. Benchmark tests were implemented on seven state-of-the-art open-source DGL models with the potential of modeling ligand bioactivities, and precisely evaluated by multiple criteria. The results indicate that, on almost all 33 GPCRs datasets and seven DGL models, AFSE greatly improved their enhancement factor (top-10%, 20% and 30%), which is the most important evaluation in virtual screening of hits from compound databases, while ensuring the superior performance on RMSE and $r^2$. The web server of AFSE is freely available at http://noveldelta.com/AFSE for academic purposes.
Collapse
Affiliation(s)
- Yueming Yin
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Haifeng Hu
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Zhen Yang
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.,National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Feihu Jiang
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Yihe Huang
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Jiansheng Wu
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.,Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
20
|
Sun C, Xuan P, Zhang T, Ye Y. Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:455-464. [PMID: 32750854 DOI: 10.1109/tcbb.2020.2999084] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The computational prediction of novel drug-target interactions (DTIs) may effectively speed up the process of drug repositioning and reduce its costs. Most previous methods integrated multiple kinds of connections about drugs and targets by constructing shallow prediction models. These methods failed to deeply learn the low-dimension feature vectors for drugs and targets and ignored the distribution of these feature vectors. We proposed a graph convolutional autoencoder and generative adversarial network (GAN)-based method, GANDTI, to predict DTIs. We constructed a drug-target heterogeneous network to integrate various connections related to drugs and targets, i.e., the similarities and interactions between drugs or between targets and the interactions between drugs and targets. A graph convolutional autoencoder was established to learn the network embeddings of the drug and target nodes in a low-dimensional feature space, and the autoencoder deeply integrated different kinds of connections within the network. A GAN was introduced to regularize the feature vectors of nodes into a Gaussian distribution. Severe class imbalance exists between known and unknown DTIs. Thus, we constructed a classifier based on an ensemble learning model, LightGBM, to estimate the interaction propensities of drugs and targets. This classifier completely exploited all unknown DTIs and counteracted the negative effect of class imbalance. The experimental results indicated that GANDTI outperforms several state-of-the-art methods for DTI prediction. Additionally, case studies of five drugs demonstrated the ability of GANDTI to discover the potential targets for drugs.
Collapse
|
21
|
Abdelbaky I, Tayara H, Chong KT. Identification of miRNA-Small Molecule Associations by Continuous Feature Representation Using Auto-Encoders. Pharmaceutics 2021; 14:pharmaceutics14010003. [PMID: 35056899 PMCID: PMC8780428 DOI: 10.3390/pharmaceutics14010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in the body and affect various diseases, including cancers. Controlling miRNAs with small molecules is studied herein to provide new drug repurposing perspectives for miRNA-related diseases. Experimental methods are time- and effort-consuming, so computational techniques have been applied, relying mostly on biological feature similarities and a network-based scheme to infer new miRNA–small molecule associations. Collecting such features is time-consuming and may be impractical. Here we suggest an alternative method of similarity calculation, representing miRNAs and small molecules through continuous feature representation. This representation is learned by the proposed deep learning auto-encoder architecture. Our suggested representation was compared to previous works and achieved comparable results using 5-fold cross validation (92% identified within top 25% predictions), and better predictions for most of the case studies (avg. of 31% vs. 25% identified within the top 25% of predictions). The results proved the effectiveness of our proposed method to replace previous time- and effort-consuming methods.
Collapse
Affiliation(s)
- Ibrahim Abdelbaky
- Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha 13518, Egypt;
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.T.); (K.T.C.); Tel.: +82-63-270-2478 (K.T.C.)
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.T.); (K.T.C.); Tel.: +82-63-270-2478 (K.T.C.)
| |
Collapse
|
22
|
Wang SH, Wang CC, Huang L, Miao LY, Chen X. Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations. Brief Bioinform 2021; 23:6447431. [PMID: 34864865 DOI: 10.1093/bib/bbab500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in multiple biological processes and human diseases and can be considered as therapeutic targets of small molecules (SMs). Because biological experiments used to verify SM-miRNA associations are time-consuming and expensive, it is urgent to propose new computational models to predict new SM-miRNA associations. Here, we proposed a novel method called Dual-network Collaborative Matrix Factorization (DCMF) for predicting the potential SM-miRNA associations. Firstly, we utilized the Weighted K Nearest Known Neighbors (WKNKN) method to preprocess SM-miRNA association matrix. Then, we constructed matrix factorization model to obtain two feature matrices containing latent features of SM and miRNA, respectively. Finally, the predicted SM-miRNA association score matrix was obtained by calculating the inner product of two feature matrices. The main innovations of this method were that the use of WKNKN method can preprocess the missing values of association matrix and the introduction of dual network can integrate more diverse similarity information into DCMF. For evaluating the validity of DCMF, we implemented four different cross validations (CVs) based on two distinct datasets and two different case studies. Finally, based on dataset 1 (dataset 2), DCMF achieved Area Under receiver operating characteristic Curves (AUC) of 0.9868 (0.8770), 0.9833 (0.8836), 0.8377 (0.7591) and 0.9836 ± 0.0030 (0.8632 ± 0.0042) in global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV and 5-fold CV, respectively. For case studies, plenty of predicted associations have been confirmed by published experimental literature. Therefore, DCMF is an effective tool to predict potential SM-miRNA associations.
Collapse
Affiliation(s)
- Shu-Hao Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Lian-Ying Miao
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
23
|
Luo J, Shen C, Lai Z, Cai J, Ding P. Incorporating Clinical, Chemical and Biological Information for Predicting Small Molecule-microRNA Associations Based on Non-Negative Matrix Factorization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2535-2545. [PMID: 32092012 DOI: 10.1109/tcbb.2020.2975780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small molecule(SM) drugs can affect the expression of miRNAs, which plays crucial roles in many important biological processes. The chemical structure and clinical information of small molecule can simultaneously incorporate information such as anatomical distribution, therapeutic effects and structural characteristics. It is necessary to develop a novel model that incorporates small molecule chemical structure and clinical information to reveal the unknown small molecule-miRNA associations. In this study, we developed a new framework based on non-negative matrix factorization, called SMANMF, to discover the potential small molecules-miRNAs associations. First, the functional similarity of two miRNAs can be obtained by computing the overlap of the target gene sets in which the miRNAs interact together, and we integrated two types of small molecule similarities, including chemical similarity and clinical similarity. Then, we utilized a non-negative matrix factorization model to discover the unknown relationship between small molecules and miRNAs. The evaluation results indicate that our model can achieve superior prediction performance compared with previous approaches in 5-fold cross-validation. At the same time, the results of case studies also reveal that the SMANMF model has good predictive performance for predicting the potential association between small molecules and miRNAs.
Collapse
|
24
|
Xuan P, Chen B, Zhang T, Yang Y. Prediction of Drug-Target Interactions Based on Network Representation Learning and Ensemble Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2671-2681. [PMID: 32340959 DOI: 10.1109/tcbb.2020.2989765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying interactions between drugs and target proteins is a critical step in the drug development process, as it helps identify new targets for drugs and accelerate drug development. The number of known drug-protein interactions (positive samples) is much lower than that of the unknown ones (negative samples), which forms a class imbalance. Most previous methods only utilised part of the negative samples to train the prediction model, so most of the information on negative samples was neglected. Therefore, a new method must be developed to predict candidate drug-related proteins and fully utilise negative samples to improve prediction performance. We present a method based on non-negative matrix factorisation and gradient boosting decision tree (GBDT), named NGDTP, to identify the candidate drug-protein interactions. NGDTP integrates multiple kinds of protein similarities, drugs-proteins interactions, and multiple kinds of drugs similarities at different levels, including target proteins of drugs, drug-related diseases, and side effects of drugs. We propose a network representation learning method based on matrix factorisation to learn low-dimensional vector representations of drug and protein nodes. On the basis of these low-dimensional node representations, a GBDT-based prediction model was constructed and it obtains the association scores through establishing multiple decision trees for a drug-protein pairs. NGDTP is an ensemble learning model that fully utilises all the negative samples to effectively alleviate the problem of class imbalance. NGDTP achieves superior prediction performance when it is compared with several state-of-the-art methods. The experimental results indicate that NGDTP also retrieves more actual drug-protein interactions in the top part of prediction result, which drew significant attention from the biologists. In addition, case studies on 10 drugs further confirmed the ability of the NGDTP to identify potential candidate proteins for drugs.
Collapse
|
25
|
Wang CC, Zhu CC, Chen X. Ensemble of kernel ridge regression-based small molecule-miRNA association prediction in human disease. Brief Bioinform 2021; 23:6407727. [PMID: 34676393 DOI: 10.1093/bib/bbab431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in human disease and can be targeted by small molecule (SM) drugs according to numerous studies, which shows that identifying SM-miRNA associations in human disease is important for drug development and disease treatment. We proposed the method of Ensemble of Kernel Ridge Regression-based Small Molecule-MiRNA Association prediction (EKRRSMMA) to uncover potential SM-miRNA associations by combing feature dimensionality reduction and ensemble learning. First, we constructed different feature subsets for both SMs and miRNAs. Then, we trained homogeneous base learners based on distinct feature subsets and took the average of scores obtained from these base learners as SM-miRNA association score. In EKRRSMMA, feature dimensionality reduction technology was employed in the process of construction of feature subsets to reduce the influence of noisy data. Besides, the base learner, namely KRR_avg, was the combination of two classifiers constructed under SM space and miRNA space, which could make full use of the information of SM and miRNA. To assess the prediction performance of EKRRSMMA, we conducted Leave-One-Out Cross-Validation (LOOCV), SM-fixed local LOOCV, miRNA-fixed local LOOCV and 5-fold CV based on two datasets. For Dataset 1 (Dataset 2), EKRRSMMA got the Area Under receiver operating characteristic Curves (AUCs) of 0.9793 (0.8871), 0.8071 (0.7705), 0.9732 (0.8586) and 0.9767 ± 0.0014 (0.8560 ± 0.0027). Besides, we conducted four case studies. As a result, 32 (5-Fluorouracil), 19 (17β-Estradiol), 26 (5-Aza-2'-deoxycytidine) and 11 (cyclophosphamide) out of top 50 predicted potentially associated miRNAs were confirmed by database or experimental literature. Above evaluation results demonstrated that EKRRSMMA is reliable for predicting SM-miRNA associations.
Collapse
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chi-Chi Zhu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
26
|
Chen X, Zhou C, Wang CC, Zhao Y. Predicting potential small molecule-miRNA associations based on bounded nuclear norm regularization. Brief Bioinform 2021; 22:6353837. [PMID: 34404088 DOI: 10.1093/bib/bbab328] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence has demonstrated the significance of taking microRNAs (miRNAs) as the target of small molecule (SM) drugs for disease treatment. Given the fact that exploring new SM-miRNA associations through biological experiments is extremely expensive, several computing models have been constructed to reveal the possible SM-miRNA associations. Here, we built a computing model of Bounded Nuclear Norm Regularization for SM-miRNA Associations prediction (BNNRSMMA). Specifically, we first constructed a heterogeneous SM-miRNA network utilizing miRNA similarity, SM similarity, confirmed SM-miRNA associations and defined a matrix to represent the heterogeneous network. Then, we constructed a model to complete this matrix by minimizing its nuclear norm. The Alternating Direction Method of Multipliers was adopted to minimize the nuclear norm and obtain predicted scores. The main innovation lies in two aspects. During completion, we limited all elements of the matrix within the interval of (0,1) to make sure they have practical significance. Besides, instead of strictly fitting all known elements, a regularization term was incorporated to tolerate the noise in integrated similarities. Furthermore, four kinds of cross-validations on two datasets and two types of case studies were performed to evaluate the predictive performance of BNNRSMMA. Finally, BNNRSMMA attained areas under the curve of 0.9822 (0.8433), 0.9793 (0.8852), 0.8253 (0.7350) and 0.9758 ± 0.0029 (0.8759 ± 0.0041) under global leave-one-out cross-validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and 5-fold cross-validation based on Dataset 1(Dataset 2), respectively. With regard to case studies, plenty of predicted associations have been verified by experimental literatures. All these results confirmed that BNNRSMMA is a reliable tool for inferring associations.
Collapse
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China
| | - Chi Zhou
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
27
|
Li J, Peng D, Xie Y, Dai Z, Zou X, Li Z. Novel Potential Small Molecule-MiRNA-Cancer Associations Prediction Model Based on Fingerprint, Sequence, and Clinical Symptoms. J Chem Inf Model 2021; 61:2208-2219. [PMID: 33899462 DOI: 10.1021/acs.jcim.0c01458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As an important biomarker in organisms, miRNA is closely related to various small molecules and diseases. Research on small molecule-miRNA-cancer associations is helpful for the development of cancer treatment drugs and the discovery of pathogenesis. It is very urgent to develop theoretical methods for identifying potential small molecular-miRNA-cancer associations, because experimental approaches are usually time-consuming, laborious, and expensive. To overcome this problem, we developed a new computational method, in which features derived from structure, sequence, and symptoms were utilized to characterize small molecule, miRNA, and cancer, respectively. A feature vector was construct to characterize small molecule-miRNA-cancer association by concatenating these features, and a random forest algorithm was utilized to construct a model for recognizing potential association. Based on the 5-fold cross-validation and benchmark data set, the model achieved an accuracy of 93.20 ± 0.52%, a precision of 93.22 ± 0.51%, a recall of 93.20 ± 0.53%, and an F1-measure of 93.20 ± 0.52%. The areas under the receiver operating characteristic curve and precision recall curve were 0.9873 and 0.9870. The real prediction ability and application performance of the developed method have also been further evaluated and verified through an independent data set test and case study. Some potential small molecules and miRNAs related to cancer have been identified and are worthy of further experimental research. It is anticipated that our model could be regarded as a useful high-throughput virtual screening tool for drug research and development. All source codes can be downloaded from https://github.com/LeeKamlong/Multi-class-SMMCA.
Collapse
Affiliation(s)
- Jinlong Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Dongdong Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yun Xie
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
28
|
Shen C, Luo J, Ouyang W, Ding P, Wu H. Identification of Small Molecule–miRNA Associations with Graph Regularization Techniques in Heterogeneous Networks. J Chem Inf Model 2020; 60:6709-6721. [DOI: 10.1021/acs.jcim.0c00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang 421001, China
| | - Hao Wu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| |
Collapse
|
29
|
Shen C, Luo J, Lai Z, Ding P. Multiview Joint Learning-Based Method for Identifying Small-Molecule-Associated MiRNAs by Integrating Pharmacological, Genomics, and Network Knowledge. J Chem Inf Model 2020; 60:4085-4097. [DOI: 10.1021/acs.jcim.0c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Zihan Lai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang 421001, China
| |
Collapse
|
30
|
Liu F, Peng L, Tian G, Yang J, Chen H, Hu Q, Liu X, Zhou L. Identifying Small Molecule-miRNA Associations Based on Credible Negative Sample Selection and Random Walk. Front Bioeng Biotechnol 2020; 8:131. [PMID: 32258003 PMCID: PMC7090022 DOI: 10.3389/fbioe.2020.00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/10/2020] [Indexed: 12/05/2022] Open
Abstract
Recently, many studies have demonstrated that microRNAs (miRNAs) are new small molecule drug targets. Identifying small molecule-miRNA associations (SMiRs) plays an important role in finding new clues for various human disease therapy. Wet experiments can discover credible SMiR associations; however, this is a costly and time-consuming process. Computational models have therefore been developed to uncover possible SMiR associations. In this study, we designed a new SMiR association prediction model, RWNS. RWNS integrates various biological information, credible negative sample selections, and random walk on a triple-layer heterogeneous network into a unified framework. It includes three procedures: similarity computation, negative sample selection, and SMiR association prediction based on random walk on the constructed small molecule-disease-miRNA association network. To evaluate the performance of RWNS, we used leave-one-out cross-validation (LOOCV) and 5-fold cross validation to compare RWNS with two state-of-the-art SMiR association methods, namely, TLHNSMMA and SMiR-NBI. Experimental results showed that RWNS obtained an AUC value of 0.9829 under LOOCV and 0.9916 under 5-fold cross validation on the SM2miR1 dataset, and it obtained an AUC value of 0.8938 under LOOCV and 0.9899 under 5-fold cross validation on the SM2miR2 dataset. More importantly, RWNS successfully captured 9, 17, and 37 SMiR associations validated by experiments among the predicted top 10, 20, and 50 SMiR candidates with the highest scores, respectively. We inferred that enoxacin and decitabine are associated with mir-21 and mir-155, respectively. Therefore, RWNS can be a powerful tool for SMiR association prediction.
Collapse
Affiliation(s)
- Fuxing Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd., Beijing, China
| | | | - Hui Chen
- College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Qi Hu
- Xiangya Second Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojun Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
31
|
Fan Y, Cui J, Zhu Q. Heterogeneous graph inference based on similarity network fusion for predicting lncRNA-miRNA interaction. RSC Adv 2020; 10:11634-11642. [PMID: 35496629 PMCID: PMC9050493 DOI: 10.1039/c9ra11043g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/14/2020] [Indexed: 12/28/2022] Open
Abstract
LncRNA and miRNA are two non-coding RNA types that are popular in current research. LncRNA interacts with miRNA to regulate gene transcription, further affecting human health and disease. Accurate identification of lncRNA-miRNA interactions contributes to the in-depth study of the biological functions and mechanisms of non-coding RNA. However, relying on biological experiments to obtain interaction information is time-consuming and expensive. Considering the rapid accumulation of gene information and the few computational methods, it is urgent to supplement the effective computational models to predict lncRNA-miRNA interactions. In this work, we propose a heterogeneous graph inference method based on similarity network fusion (SNFHGILMI) to predict potential lncRNA-miRNA interactions. First, we calculated multiple similarity data, including lncRNA sequence similarity, miRNA sequence similarity, lncRNA Gaussian nuclear similarity, and miRNA Gaussian nuclear similarity. Second, the similarity network fusion method was employed to integrate the data and get the similarity network of lncRNA and miRNA. Then, we constructed a bipartite network by combining the known interaction network and similarity network of lncRNA and miRNA. Finally, the heterogeneous graph inference method was introduced to construct a prediction model. On the real dataset, the model SNFHGILMI achieved AUC of 0.9501 and 0.9426 ± 0.0035 based on LOOCV and 5-fold cross validation, respectively. Furthermore, case studies also demonstrate that SNFHGILMI is a high-performance prediction method that can accurately predict new lncRNA-miRNA interactions. The Matlab code and readme file of SNFHGILMI can be downloaded from https://github.com/cj-DaSE/SNFHGILMI.
Collapse
Affiliation(s)
- Yongxian Fan
- School of Computer and Information Security, Guilin University of Electronic Technology Guilin 541004 China
| | - Juan Cui
- School of Computer and Information Security, Guilin University of Electronic Technology Guilin 541004 China
| | - QingQi Zhu
- School of Computer and Information Security, Guilin University of Electronic Technology Guilin 541004 China
| |
Collapse
|
32
|
Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Husnain T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153168. [PMID: 31982837 DOI: 10.1016/j.phymed.2020.153168] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is hyper-proliferative, multi-factorial and multi-step, heterogeneous group of molecular disorders. It is the second most reported disease after heart diseases. Breast carcinoma is the foremost death causing disease in female population worldwide. Cancer can be controlled by regulating the gene expression. Current therapeutic options are associated with severe side effects and are expensive for the people living in under-developed countries. Plant derived substances have potential application against different diseases like cancer, inflammation and viral infections. HYPOTHESIS The mechanism of action of the medicinal plants is largely unknown. Targeting gene network and miRNA using medicinal plants could help in improving the therapeutic options against cancer. METHODS The literature from 135 articles was reviewed by using PubMed, google scholar, Science direct to find out the plants and plant-based compounds against breast cancer and also the studies reporting their mechanistic route of action both at coding and noncoding RNA levels. RESULTS Natural products act as selective inhibitors of the cancerous cells by targeting oncogenes and tumor suppressor genes or altering miRNA expression. Natural compounds like EGCG from tea, Genistein from fava beans, curcumin from turmeric, DIM found in cruciferous, Resveratrol a polyphenol and Quercetin a flavonoid is found in various plants have been studied for their anticancer activity. The EGCG was found to inhibit proliferative activity by modulating miR-16 and miR-21. Similarly, DIM was found to down regulate miR-92a which results to modulate NFkB and stops cancer development. Another plant-based compound Glyceollins found to upregulate miR-181c and miR-181d having role in tumor suppression. It also found to regulate miR-22, 29b and c, miR-30d, 34a and 195. Quercetin having anti-cancer activity induce the apoptosis through regulating miR-16, 26b, 34a, let-7g, 125a and miR-605 and reduce the miRNA expression like miR-146a/b, 503 and 194 which are involved in metastasis. CONCLUSION Targeting miRNA expression using natural plant extracts can have a reverse effect on cell proliferation; turning on and off tumor-inducing and suppressing genes. It can be efficiently adopted as an adjuvant with the conventional form of therapies to increase their efficacy against cancer progression.
Collapse
Affiliation(s)
- Fayyaz Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Ijaz
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| | - Zarnab Ahmad
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Nadia Farooq
- Department of Surgery, Sir Gangaram Hospital Lahore Punjab, Pakistan
| | - Muhammad Bilal Sarwar
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Tayyab Husnain
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
33
|
Chu Y, Kaushik AC, Wang X, Wang W, Zhang Y, Shan X, Salahub DR, Xiong Y, Wei DQ. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Brief Bioinform 2019; 22:451-462. [PMID: 31885041 DOI: 10.1093/bib/bbz152] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | - Xiangeng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Wei Wang
- Mathematical Sciences, Shanghai Jiao Tong University
| | - Yufang Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | | | | | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| |
Collapse
|
34
|
Zhao Y, Chen X, Yin J, Qu J. SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association. RNA Biol 2019; 17:281-291. [PMID: 31739716 DOI: 10.1080/15476286.2019.1694732] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating studies have shown that microRNAs (miRNAs) could be used as targets of small-molecule (SM) drugs to treat diseases. In recent years, researchers have proposed many computational models to reveal miRNA-SM associations due to the huge cost of experimental methods. Considering the shortcomings of the previous models, such as the prediction accuracy of some models is low or some cannot be applied for new SMs (miRNAs), we developed a novel model named Symmetric Nonnegative Matrix Factorization for Small Molecule-MiRNA Association prediction (SNMFSMMA). Different from some models directly applying the integrated similarities, SNMFSMMA first performed matrix decomposition on the integrated similarity matrixes, and calculated the Kronecker product of the new integrated similarity matrixes to obtain the SM-miRNA pair similarity. Further, we applied regularized least square to obtain the mapping function of the SM-miRNA pairs to the associated probabilities by minimizing the objective function. On the basis of Dataset 1 and 2 extracted from SM2miR v1.0 database, we implemented global leave-one-out cross validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV and 5-fold cross-validation to evaluate the prediction performance. Finally, the AUC values obtained by SNMFSMMA in these validation reached 0.9711 (0.8895), 0.9698 (0.8884), 0.8329 (0.7651) and 0.9644 ± 0.0035 (0.8814 ± 0.0033) based on Dataset 1 (Dataset 2), respectively. In the first case study, 5 of the top 10 associations predicted were confirmed. In the second, 7 and 8 of the top 10 predicted miRNAs related with 5-FU and 5-Aza-2'-deoxycytidine were confirmed. These results demonstrated the reliable predictive power of SNMFSMMA.
Collapse
Affiliation(s)
- Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Jun Yin
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
35
|
Wang CC, Chen X. A Unified Framework for the Prediction of Small Molecule–MicroRNA Association Based on Cross-Layer Dependency Inference on Multilayered Networks. J Chem Inf Model 2019; 59:5281-5293. [DOI: 10.1021/acs.jcim.9b00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
36
|
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments. Expert Opin Drug Discov 2019; 15:63-83. [PMID: 31739699 DOI: 10.1080/17460441.2020.1690449] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that repress the expression of their target genes by reducing mRNA stability and/or inhibiting translation. miRNAs are known to be aberrantly regulated in cancers. Modulators of miRNA (mimics and antagonists) have emerged as novel therapeutic tools for cancer treatment.Areas covered: This review summarizes the various strategies that have been applied to correct the dysregulated miRNA in cancer cells. The authors also discuss the recent advances in the technical development and preclinical/clinical evaluation of miRNA-based therapeutic agents.Expert opinion: Application of miRNA-based therapeutics for cancer treatment is appealing because they are able to modulate multiple dysregulated genes and/or signaling pathways in cancer cells. Major obstacles hindering their clinical development include drug delivery, off-target effects, efficacious dose determination, and safety. Tumor site-specific delivery of novel miRNA therapeutics may help to minimize off-target effects and toxicity. Combination of miRNA therapeutics with other anticancer treatment modalities could provide a synergistic effect, thus allowing the use of lower dose, minimizing off-target effects, and improving the overall safety profile in cancer patients. It is critical to identify individual miRNAs with cancer type-specific and context-specific regulation of oncogenes and tumor-suppressor genes in order to facilitate the precise use of miRNA anticancer therapeutics.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|