1
|
Hu W, Zhang W, Zhou Y, Luo Y, Sun X, Xu H, Shi S, Li T, Xu Y, Yang Q, Qiu Y, Zhu F, Dai H. MecDDI: Clarified Drug-Drug Interaction Mechanism Facilitating Rational Drug Use and Potential Drug-Drug Interaction Prediction. J Chem Inf Model 2023; 63:1626-1636. [PMID: 36802582 DOI: 10.1021/acs.jcim.2c01656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Drug-drug interactions (DDIs) are a major concern in clinical practice and have been recognized as one of the key threats to public health. To address such a critical threat, many studies have been conducted to clarify the mechanism underlying each DDI, based on which alternative therapeutic strategies are successfully proposed. Moreover, artificial intelligence-based models for predicting DDIs, especially multilabel classification models, are highly dependent on a reliable DDI data set with clear mechanistic information. These successes highlight the imminent necessity to have a platform providing mechanistic clarifications for a large number of existing DDIs. However, no such platform is available yet. In this study, a platform entitled "MecDDI" was therefore introduced to systematically clarify the mechanisms underlying the existing DDIs. This platform is unique in (a) clarifying the mechanisms underlying over 1,78,000 DDIs by explicit descriptions and graphic illustrations and (b) providing a systematic classification for all collected DDIs based on the clarified mechanisms. Due to the long-lasting threats of DDIs to public health, MecDDI could offer medical scientists a clear clarification of DDI mechanisms, support healthcare professionals to identify alternative therapeutics, and prepare data for algorithm scientists to predict new DDIs. MecDDI is now expected as an indispensable complement to the available pharmaceutical platforms and is freely accessible at: https://idrblab.org/mecddi/.
Collapse
Affiliation(s)
- Wei Hu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Huimin Xu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Teng Li
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yichao Xu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qianqian Yang
- Department of Pharmacy, Affiliated Hangzhou First Peoples Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Clinical Pharmacy Research Center, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Feng Zhu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Haibin Dai
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Clinical Pharmacy Research Center, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
2
|
Tremmel R, Nies AT, van Eijck BAC, Handin N, Haag M, Winter S, Büttner FA, Kölz C, Klein F, Mazzola P, Hofmann U, Klein K, Hoffmann P, Nöthen MM, Gaugaz FZ, Artursson P, Schwab M, Schaeffeler E. Hepatic Expression of the Na+-Taurocholate Cotransporting Polypeptide Is Independent from Genetic Variation. Int J Mol Sci 2022; 23:ijms23137468. [PMID: 35806468 PMCID: PMC9267852 DOI: 10.3390/ijms23137468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Barbara A. C. van Eijck
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Florian A. Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Franziska Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Pascale Mazzola
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Fabienne Z. Gaugaz
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, and of Pharmacy and Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-711-8101-3700
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
3
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
4
|
Interaction of Remdesivir with Clinically Relevant Hepatic Drug Uptake Transporters. Pharmaceutics 2021; 13:pharmaceutics13030369. [PMID: 33802215 PMCID: PMC7999182 DOI: 10.3390/pharmaceutics13030369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Remdesivir has been approved for treatment of COVID-19 and shortens the time to recovery in hospitalized patients. Drug transporters removing remdesivir from the circulation may reduce efficacy of treatment by lowering its plasma levels. Information on the interaction of remdesivir with drug transporters is limited. We therefore assessed remdesivir as substrate and inhibitor of the clinically relevant hepatic drug uptake transporters organic anion transporting poly-peptide (OATP)-1B1 (SLCO1B1), its common genetic variants OATP1B1*1b, OATP1B1*5, OATP1B1*15, as well as OATP1B3 (SLCO1B3), OATP2B1 (SLCO2B1) and organic cation transporter (OCT)-1 (SLC22A1). Previously established transporter-overexpressing cells were used to measure (i) cellular remdesivir uptake and (ii) cellular uptake of transporter probe substrates in the presence of remdesivir. There was a high remdesivir uptake into vector-transfected control cells. Moderate, but statistically significant higher uptake was detected only for OATP1B1-, OATP1B1*1b and OATP1B1*15-expressing cells when compared with control cells at 5 µM. Remdesivir inhibited all investigated transporters at 10 µM and above. In conclusion, the low uptake rates suggest that OATP1B1 and its genetic variants, OATP1B3, OATP2B1 and OCT1 are not relevant for hepatocellular uptake of remdesivir in humans. Due to the rapid clearance of remdesivir, no clinically relevant transporter-mediated drug-drug interactions are expected.
Collapse
|
5
|
Bajraktari-Sylejmani G, Weiss J. Potential Risk of Food-Drug Interactions: Citrus Polymethoxyflavones and Flavanones as Inhibitors of the Organic Anion Transporting Polypeptides (OATP) 1B1, 1B3, and 2B1. Eur J Drug Metab Pharmacokinet 2020; 45:809-815. [PMID: 32661908 PMCID: PMC7677148 DOI: 10.1007/s13318-020-00634-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background and Objectives Citrus flavonoids are not only components of daily nutrition, they are also promoted as dietary supplements and are important ingredients in traditional medicines. Interactions of flavonoids with synthetic drugs represent an often neglected issue. We therefore investigated in vitro whether the polymethoxyflavones nobiletin, sinensetin, and tangeretin and the flavonoid rutinosides didymin, hesperidin, and narirutin can inhibit human organic anion transporting polypeptides (OATP) 1B1, 1B3, and 2B1, which are important transporters mediating drug-drug and food-drug interactions. Methods Inhibition was investigated by quantifying the decreased uptake of the fluorescent OATP1B1 and OATP1B3 substrate 8-fluorescein-cAMP in HEK293 cells overexpressing OATP1B1 or OATP1B3 and of the fluorescent OATP2B1 substrate 4′,5′-dibromofluorescein in HEK293 cells overexpressing OATP2B1. Results We demonstrate that all flavonoids investigated inhibit OATP2B1 in the lower micromolar range (IC50 between 1.6 and 14.2 µM), but only the polymethoxyflavones also inhibit OATP1B1 and 1B3 (IC50 between 2.1 and 21 µM). Conclusions All flavonoids investigated might contribute to the intestinal OATP2B1-based interactions with drugs observed with citrus juices or fruits. In contrast, the concentration of the polymethoxyflavones after consumption of citrus juices or fruits is most likely too low to reach relevant systemic concentrations and thus to inhibit hepatic OATP1B1 and OATP1B3, but there might be a risk when they are consumed as medicines or as dietary supplements.
Collapse
Affiliation(s)
- Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Tikkanen A, Pierrot E, Deng F, Sánchez VB, Hagström M, Koenderink JB, Kidron H. Food Additives as Inhibitors of Intestinal Drug Transporter OATP2B1. Mol Pharm 2020; 17:3748-3758. [PMID: 32845645 DOI: 10.1021/acs.molpharmaceut.0c00507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Food additives are compounds that are added to food and beverage to improve the taste, color, preservation, or composition. Generally, food additives are considered safe for human use due to safety evaluations conducted by food safety authorities and high safety margins applied to permitted usage levels. However, the interaction potential of food additives with simultaneously administered medication has not received much attention. Even though many food additives are poorly absorbed into systemic circulation, high concentrations could exist in the intestinal lumen, making intestinal drug transporters, such as the uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1), a possible site of food additive-drug interactions. In the present work, we aimed to characterize the interaction of a selection of 25 food additives including colorants, preservatives, and sweeteners with OATP2B1 in vitro. In human embryonic kidney 293 (HEK293) cells transiently overexpressing OATP2B1 or control, uptake of dibromofluorescein was studied with and without 50 μM food additive at pH 7.4. As OATP2B1 displays substrate- and pH-dependent transport functions and the intraluminal pH varies along the gastrointestinal tract, we performed the studies also at pH 5.5 using estrone sulfate as an OATP2B1 substrate. Food additives that inhibited OATP2B1-mediated substrate transport by ≥50% were subjected to dose-response studies. Six colorants were identified and validated as OATP2B1 inhibitors at pH 5.5, but only three of these were categorized as inhibitors at pH 7.4. One sweetener was validated as an inhibitor under both assay conditions, whereas none of the preservatives exhibited ≥50% inhibition of OATP2B1-mediated transport. Extrapolation of computed inhibitory constants (Ki values) to estimations of intestinal food additive concentrations implies that selected colorants could inhibit intestinal OATP2B1 also in vivo. These results suggest that food additives, especially colorants, could alter the pharmacokinetics of orally administered OATP2B1 substrate drugs, although further in vivo studies are warranted to understand the overall clinical consequences of the findings.
Collapse
Affiliation(s)
- Alli Tikkanen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Estelle Pierrot
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.,Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
| | - Virginia Barras Sánchez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja Hagström
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen 6525 EZ, The Netherlands
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Unger MS, Schumacher L, Enzlein T, Weigt D, Zamek-Gliszczynski MJ, Schwab M, Nies AT, Drewes G, Schulz S, Reinhard FBM, Hopf C. Direct Automated MALDI Mass Spectrometry Analysis of Cellular Transporter Function: Inhibition of OATP2B1 Uptake by 294 Drugs. Anal Chem 2020; 92:11851-11859. [DOI: 10.1021/acs.analchem.0c02186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melissa S. Unger
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Lena Schumacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Maciej J. Zamek-Gliszczynski
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gerard Drewes
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Sandra Schulz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | | | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|